• Title/Summary/Keyword: three-dimensional computed tomography

Search Result 486, Processing Time 0.034 seconds

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

CT Based 3-Dimensional Treatment Planning of Intracavitary Brachytherapy for Cancer of the Cervix : Comparison between Dose-Volume Histograms and ICRU Point Doses to the Rectum and Bladder

  • Hashim, Natasha;Jamalludin, Zulaikha;Ung, Ngie Min;Ho, Gwo Fuang;Malik, Rozita Abdul;Ee Phua, Vincent Chee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5259-5264
    • /
    • 2014
  • Background: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Materials and Methods: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose ($D_{Max}$) to rectum was the highest recorded dose at one of these five points. Using the HDRplus 2.6 brachyhtherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded ($D_{2cc}$) for all individual fractions. The mean $D_{2cc}$ of rectum was compared to the means of ICRU rectal point and rectal $D_{Max}$ using the Student's t-test. The mean $D_{2cc}$ of bladder was compared with the mean ICRU bladder point using the same statistical test. The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (${\alpha}/{\beta}$ value of 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was $77.5Gy{\alpha}/{\beta}10$. The mean dose to the rectum was $4.58{\pm}1.22Gy$ for $D_{2cc}$, $3.76{\pm}0.65Gy$ at $D_{ICRU}$ and $4.75{\pm}1.01Gy$ at $D_{Max}$. The mean rectal $D_{2cc}$ dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48-1.19Gy). The mean EQD2 was $68.52{\pm}7.24Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$, $61.71{\pm}2.77Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$ and $69.24{\pm}6.02Gy_{{\alpha}/{\beta}3}$ at $D_{Max}$. The mean ratio of $D_{2cc}$ rectum to $D_{ICRU}$ rectum was 1.25 and the mean ratio of $D_{2cc}$ rectum to $D_{Max}$ rectum was 0.98 for all individual fractions. The mean dose to the bladder was $6.00{\pm}1.90Gy$ for $D_{2cc}$ and $5.10{\pm}2.03Gy$ at $D_{ICRU}$. However, the mean $D_{2cc}$ dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25Gy). The mean EQD2 was $81.85{\pm}13.03Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$ and $74.11{\pm}19.39Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$. The mean ratio of $D_{2cc}$ bladder to $D_{ICRU}$ bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose. Conclusions: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the $D_{2cc}$ and rectal $D_{Max}$ for $D_{2cc}$. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the $D_{2cc}$.

Quantitative Study of Annular Single-Crystal Brain SPECT (원형단일결정을 이용한 SPECT의 정량화 연구)

  • 김희중;김한명;소수길;봉정균;이종두
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 1998
  • Nuclear medicine emission computed tomography(ECT) can be very useful to diagnose early stage of neuronal diseases and to measure theraputic results objectively, if we can quantitate energy metabolism, blood flow, biochemical processes, or dopamine receptor and transporter using ECT. However, physical factors including attenuation, scatter, partial volume effect, noise, and reconstruction algorithm make it very difficult to quantitate independent of type of SPECT. In this study, we quantitated the effects of attenuation and scatter using brain SPECT and three-dimensional brain phantom with and without applying their correction methods. Dual energy window method was applied for scatter correction. The photopeak energy window and scatter energy window were set to 140ke${\pm}$10% and 119ke${\pm}$6% and 100% of scatter window data were subtracted from the photopeak window prior to reconstruction. The projection data were reconstructed using Butterworth filter with cutoff frequency of 0.95cycles/cm and order of 10. Attenuation correction was done by Chang's method with attenuation coefficients of 0.12/cm and 0.15/cm for the reconstruction data without scatter correction and with scatter correction, respectively. For quantitation, regions of interest (ROIs) were drawn on the three slices selected at the level of the basal ganglia. Without scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.2 and 2.1, respectively. However, the ratios between basal ganglia and background were very similar for with and without attenuation correction. With scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.69 and 2.64, respectively. These results indicate that the attenuation correction is necessary for the quantitation. When true ratios between basal ganglia and background were 6.58, 4.68, 1.86, the measured ratios with scatter and attenuation correction were 76%, 80%, 82% of their true ratios, respectively. The approximate 20% underestimation could be partially due to the effect of partial volume and reconstruction algorithm which we have not investigated in this study, and partially due to imperfect scatter and attenuation correction methods that we have applied in consideration of clinical applications.

  • PDF

The reliability of the cephalogram generated from cone-beam CT (Cone-beam CT로부터 제작된 측모 두부계측방사선사진의 정확도 평가)

  • Kang, Ji-Young;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.391-399
    • /
    • 2007
  • Three-dimensional approaches for the diagnosis and analysis of the dentofacial area are becoming more popular in accordance with the development of cone-beam CT (CBCT). The purposes of this study were to evaluate the reliability of cephalometric measurements of lateral cephalograms generated from a CBCT image by making comparisons with the traditional digital lateral cephalogram, and to evaluate the possibility of the clinical application of CBCT generated cephalogram images. Methods: Twenty patients whose external auditory meatus could be identified in the CBCT image were selected, and both CBCT and digital cephalograms were taken. Differences between the measurements of both cephalograms were tested by paired t-test. Results: Among the 22 measurements used, only U1-FH, Mx6 to PTV, and maxillomandibular difference showed statistically significant differences between the CBCT generated cephalogram and the digital cephalogram. Conclusions: The results suggest that the CBCT generated cephalogram can be used for some cephalometric measurements not requiring porion, PTV, condylion as a landmark (SNA, SNB, U1 to SN, IMPA, interincisal angle, etc.).

Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect (토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차)

  • Jung, Jae Hong;Cho, Kwang Hwan;Moon, Seong Kwon;Bae, Sun Hyun;Min, Chul Kee;Kim, Eun Seog;Yeo, Seung-Gu;Choi, Jin Ho;Jung, Joo-Yong;Choe, Bo Young;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • The purpose of this study was to analyze the rotational errors of roll, pitch, and yaw in the whole breast cancer treated by the three-dimensional radiation therapy (3D-CRT) using TomoDirect (TD). Twenty-patient previously treated with TD 3D-CRT was selected. We performed a retrospective clinical analysis based on 80 images of megavoltage computed tomography (MVCT) including the systematic and random variation with patient setup errors and treatment setup margin (mm). In addition, a rotational error (degree) for each patient was analyzed using the automatic image registration. The treatment margin of X, Y, and Z directions were 4.2 mm, 6.2 mm, and 6.4 mm, respectively. The mean value of the rotational error for roll, pitch, and yaw were $0.3^{\circ}$, $0.5^{\circ}$, $0.1^{\circ}$, and all of systematic and random error was within $1.0^{\circ}$. The errors of patient positioning with the Y and Z directions have generally been mainly higher than the X direction. The percentage in treatment fractions in less than $2^{\circ}$ at roll, pitch, and yaw are 95.1%, 98.8%, and 97.5%, respectively. However, the edge of upper and lower (i.e., bottom) based on the center of therapy region (point) will quite a possibility that it is expected to twist even longer as the length of treatment region. The patient-specific characters should be considered for the accuracy and reproducibility of treatment and it is necessary to confirm periodically the rotational errors, including patient repositioning and repeating MVCT scan.

The Analysis of Predictive Factors for the Identification of Patients Who Could Benefit from Respiratory-Gated Radiotherapy in Non-Small Cell Lung Cancer (비소세포성 폐암에서 호흡동기방사선치료 적용 환자군의 선택을 위한 예측인자들의 분석)

  • Jang, Seong-Soon;Park, Ji-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.4
    • /
    • pp.228-239
    • /
    • 2009
  • Purpose: 4DCT scans performed for radiotherapy were retrospectively analyzed to assess the possible benefits of respiratory gating in non-small cell lung cancer (NSCLC) and established the predictive factors for identifying patients who could benefit from this approach. Materials and Methods: Three treatment planning was performed for 15 patients with stage I~III NSCLC using different planning target volumes (PTVs) as follows: 1) PTVroutine, derived from the addition of conventional uniform margins to gross tumor volume (GTV) of a single bin, 2) PTVall phases (patient-specific PTV), derived from the composite GTV of all 6 bins of the 4DCT, and 3) PTVgating, derived from the composite GTV of 3 consecutive bins at end-exhalation. Results: The reductions in PTV were 43.2% and 9.5%, respectively, for the PTVall phases vs. PTVroutine and PTVgating vs. PTVall phases. Compared to PTVroutine, the use of PTVall phases and PTVgating reduced the mean lung dose (MLD) by 18.1% and 21.6%, and $V_{20}$ by 18.2% and 22.0%, respectively. Significant correlations were seen between certain predictive factors selected from the tumor mobility and volume analysis, such as the 3D mobility vector, the reduction in 3D mobility and PTV with gating, and the ratio of GTV overlap between 2 extreme bins and additional reductions in both MLD and $V_{20}$ with gating. Conclusion: The additional benefits with gating compared to the use of patient-specific PTV were modest; however, there were distinct correlations and differences according to the predictive factors. Therefore, these predictive factors might be useful for identifying patients who could benefit from respiratory-gated radiotherapy.