• Title/Summary/Keyword: three-dimensional Navier-Stokes flow

Search Result 440, Processing Time 0.03 seconds

Performance Analysis of a Centrifugal Fan with Splitters (수치해석에 의한 스플리터 부착 원심송풍기 성능특성 연구)

  • Jang, Choon-Man;Choi, Ka-Ram;Yang, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper describes the performance of a centrifugal fan used for refuse collection systems according to the chord length of the splitters installed near the blade suction and pressure surface sides. The fan performance is analyzed by three-dimensional Navier.Stokes analysis and is compared to the results obtained experimentally. Throughout the numerical simulation of the fan with splitters, it is found that the reverse-flow region observed near the suction side of the blade can be reduced by installing a splitter. The fan performance is successfully improved by controlling the chord length of the splitter installed near the blade suction side. Under the designed flow condition, the efficiency and pressure of a fan with splitters increase by up to 4% and 18%, respectively, compared to the reference fan.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

Thermal managing effects by cooling channels on performance of a PEMFC (냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구)

  • Sohn, Young-Jun;Kim, Min-Jin;Park, Gu-Gon;Kim, Kyoung-Youn;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.;Aliyev, Soltan A.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.439-464
    • /
    • 2017
  • The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity relations of the plate are described through the harmonic potential and linearized (with respect to perturbations caused by external time-harmonic force) form of these relations is used in the present investigation. The plane-strain state in the plate is considered and the motion of that is described within the scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution to the corresponding boundary-value problem. Numerical results on the frequency response of the interface normal stress and normal velocity and the influence of the initial stretching of the plate on this response are presented and discussed. In particular, it is established that the initial stretching of the plate can decrease significantly the absolute values of the aforementioned quantities.

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.