• Title/Summary/Keyword: three-component geomagnetic fields

Search Result 3, Processing Time 0.018 seconds

Wavelet Based Semblance and Eigenvalue Analysis for Geomagnetic Variation Related to Micro-Earthquakes in the Korean Peninsula

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Kim, Ki-Yeon
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.408-421
    • /
    • 2012
  • The objective of this paper is to apply a newly developed wavelet-based semblance filtering and eigenvalue analysis to investigate the geomagnetic variations in some micro-earthquakes that had occurred in the Korean Peninsula. The wavelet-based filtering showed improved results in delineating the geomagnetic variations in relation to earthquake events from their background field. In addition, the eigenvalues analysis was also useful for the interpretation of three components geomagnetic fields during the earthquake events. The wavelet-based semblance analysis showed a prominent result for short-term geomagnetic variation related to the earthquake event, and the eigenvalue analysis was feasible to long-term geomagnetic variation. Considering the fact that the basement rock of the Korean Peninsula has a highly resistive electrical structure, it seems to be possible for small magnitude earthquakes to generate some distinguished geomagnetic variations.

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

On the Temporal Variability of Geomagnetic Field and Transfer Function at Icheon Observatory (이천관측소에서 측정된 지자기장 및 지자기 전달함수의 시간적 변동성)

  • Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.604-614
    • /
    • 2004
  • Using three-components geomagnetic data from a permanent geomagnetic observatory in Icheon, we have computed the power spectrum of each geomagnetic component, amplitude, phase and estimation error of transfer function for each day in the 6 months period July 2002${\sim}$December 2002. The temporal variation of power spectrum have random appearances with repeating relative strong and weak magnitude, which is considered as solar activities. However, there is no clear long-term trend. In the case of amplitude, phase and error of transfer function, even though there are some random patterns over the periods of 1000 s and under 100 s, they seem to be comparatively stable without manifest temporal changes. Futhermore, we have estimated electrical field by assuming P$_{1}\;^{0}$ spherical harmonics and then calculated the approximated apparent resistivity for each day. As a result, the variations of resistivity depend on the temporal magnitude of spectral power in horizontal magnetic fields rather than hydrological changes in near surface.