• 제목/요약/키워드: three-axis force/torque sensor

검색결과 10건 처리시간 0.021초

재활로봇용 3축 힘/토크센서 설계 (Design of Three-Axis Force/Torque Sensor for Rehabilitation Robot)

  • 정재현;김갑순
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, we described the design of a three-axis force/torque sensor for measuring the force and torque in a lower-limb rehabilitation robot. The three-axis force/torque sensor is composed of Fx force sensor, Fz force sensor and Tz torque sensor. The sensing element for Fx force sensor and Tz torque sensor is used in a two-step parallel plate beam, and that of Fz force sensor is used in a parallel plate beam. The rated loads of Fx force sensor, Tz torque sensor and Fz force sensor are 300 N, 15 N m and 100 N, respectively. The three-axis force/torque sensor was designed using the finite element method, and manufactured using strain-gauges. The three-axis force sensor was further characterized. As a result, the interference error of the three-axis force/torque sensor was < 1.24%, the repeatability error of each sensor was < 0.03%, and the non-linearity was < 0.02%.

원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석 (Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes)

  • 김주용;강철구
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

발목굽힘 재활운동을 위한 발목재활로봇 개발 (Development of an Ankle Rehabilitation Robot for Ankle-Bending Rehabilitation Exercise)

  • 정재현;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.31-39
    • /
    • 2016
  • This paper describes the design of an ankle rehabilitation robot for the force measurement of a severe stroke patient staying in a bed ward. The developed ankle rehabilitation robot was attached to a three-axis force/torque sensor that could detect force Fx, Fz, and torque Tz and measure the ankle rotation force (Fx) exerted on the ankle and the signal force Fz and torque Tz to be used as a safety device. The robot was designed and manufactured for bedridden stroke patients, and the robot program was manufactured to perform the flexibility rehabilitation exercise for ankle bending and to measure the ankle force to judge the degree of rehabilitation. According to the result of the characteristics test of the developed rehabilitation robot, it was safely operated while the ankle-bending flexibility rehabilitation exercise and the emergency situation were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.

A Simple Control Method for Opening a Door with Mobile Manipulator

  • Kang, Ju-Hyun;Hwang, Chang-Soon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1593-1597
    • /
    • 2003
  • The home service robot supports human beings by performing various kinds of works at home. This paper presents a simple control method for opening a door from the viewpoint of the mobile manipulation. The simulation shows various results of path planning and motion planning for opening a door. The joint trajectories were generated by the simulation system. In general, a six-axis force/torque sensor at an end-effector is needed in order to maintain the static equilibrium of the manipulator. But we show another method. From three components of applied forces which was directly obtained by the three-axis force sensor and three components of applied forces which was indirectly estimated by the joint-torque sensors, all of joint torques that will exactly balance forces at the end-effector in the static situation can be found. It is more practical method than using a six-axis force sensor in a wrist. Experimental results have shown that the opening a door can be realized more effectively from the suggested control method of mobile manipulation.

  • PDF

저가형 3D프린팅 2축 압력 센서 개발 (Development of Low-cost 3D Printing Bi-axial Pressure Sensor)

  • 최헌수;여준성;성지훈;최현진
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

로보트의 힘제어를 이용한 윤곽 추적, 삽입 및 그라인딩 작업의 구현에 관한 연구 (A Study on the Implementation of Edge-Following Insertion and grinding Tasks Using Robot Force Control)

  • 정재욱;이범희;고명삼
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.207-216
    • /
    • 1991
  • In the case that the robot manipulator should respond to the variance and uncertainty of the environment in performing preforming precision tasks, it is indispensable that the robot utilizes the various sensors for intrlligence. In this paper, the robot force control method is implemented with a force/torque sensor, two personal computers, and a PUMA 560 manipulator for performing the various application tadks. The hybrid position/force control method is used to control the force and position axis separately. An interface board is designed to read the force/torque sensor output into the computer. Since the two computers should exchange the information quickly, a common memory board is designed. Before the algorithms of application tasks are developed, the basic force commands must be supplied. Thus, the MOVE-UNTIL command is used at the discrete time instant and, the MOVE-COMPLY is used at the continuous time instant for receiving the force feedback information. Using the two basic force commands, three application algorithms are developed and implemented for edge-following, insertion, and grinding tasks.

  • PDF

힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구 (Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor)

  • 김민효;진상록
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선 (Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion)

  • 송준용;이성훈;송원경
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

c-CMG Cluster for Small Satellites

  • Lee, Seung-Mok;Seo, Hyun-Ho;Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.105-114
    • /
    • 2007
  • This article presents the details of a designed control moment gyroscope (CMG) with a constant speed momentum wheel and one-axis-gimbal, and its experimental results performed at Korea Aerospace Research Institute. The CMG which is able to produce a torque of lOO mNm per each, is mounted in a pyramid configuration with four SGCMGs. Each CMG test and a single axis maneuver test with four-CMG cluster configuration are performed to confirm their performance on a ground-test facilities consisted of three major parts: a vibration isolation system, a dynamic force plate (Kistler sensor), and a DSP board. These facilities provide the accurate data of three axial and torques from the control moment gyro. Details of the CMG experimental results are presented with discussion of the experimental errors. The experimental data are compared with theoretical results and both results are used to verify their performance specifications.

다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구 (Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot)

  • 정창욱;노태양
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1071-1076
    • /
    • 2011
  • 본 연구에서는 산업용 다관절 로봇을 이용한 3 차원 곡면가공 방안에 대하여 연구하였다. 가반중량이 큰 산업용 로봇의 경우 반복위치정밀도가 높지 않아 위치오차와 가공 깊이 방향 오차를 발생시키며, 본 연구에서는 레이저 변위센서를 이용하여 이를 보정하는 방법을 제시하였다. 로봇교시포인터의 수를 줄이기 위하여 가공면의 특이점들만을 이용하여 곡면 가공이 가능하도록 로봇 궤적을 생성하는 방안을 연구하였다. 본 연구에서는 실제 산업용 로봇을 이용하여 가공시험을 수행하였다. 회전수, 가공각도, 가공깊이, 가공속도 등의 가공조건을 변경해가며, 표면조도, 실제 가공깊이, 진동 및 소음 발생에 대한 시험을 수행하여 적용 가능한 가공조건을 도출하였다.