• Title/Summary/Keyword: three types of cement

Search Result 171, Processing Time 0.028 seconds

A Comparative Study on the Performance Evaluation of Concrete Slab for Bridge Deck Overlay (교면포장용 콘크리트 슬래브의 성능평가에 대한 비교 연구)

  • Lee, Ji-Hoon;Park, Joon-Suk;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.483-486
    • /
    • 2007
  • The present study is an exploratory research concerned with evaluation of three types of high performance concrete for bridge deck applications. These include A-Type (silica fume 6%), B-Type (silica fume 6% plus fly ash 20%), C-Type (silica fume 6% plus blast-furnace slag 40%). Test results compare with Latex modified concrete (LMC) and Ordinary portland cement concrete (OPC). The results indicates that high performance concrete for bridge deck overlay shows the excellent mechanical and durability performance for LMC and OPC in case of static loading test. Analytical results are similar with experimental results. However there are relative errors of $1{\sim}4mm$ for deflection and maximum 12% for strain.

  • PDF

Evaluation on the Basic Properties of Phosphate Modified Portland Cement Paste for Potential Application of Geologic CO2 Sequestration (이산화탄소 지중 격리용 인산염 혼입 시멘트 페이스트에 관한 기초물성 평가)

  • Yoon, Ju-Han;Kim, Seong-Geun;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • As global warming became a worldwide issue, a significant effort has been made on the development of technology related to $CO_2$ capture and storage. Geologic sequestration of $CO_2$ is one of those technologies for safe disposal of $CO_2$. Geologic sequestration stores $CO_2$ in the form of supercritical fluid into the underground site surrounded by solid rock, and concrete is used for prevention of $CO_2$ leakage into the atmosphere. In such case, concrete may experience severe damage by attack of supercritical $CO_2$, and especially in contact with underground water, very aggressive form of carbonation can occur. In this work, to prevent such deterioration in concrete, calcium phosphates were added to the portland cement to produce hydroxyapatite, one of the most stable mineral in the world. Temperature rise, viscosity, set and stiffening, and strength development of cement paste incorporating three different types of calcium phosphates were investigated. According to the results, it was found that the addition of calcium phosphate increased apparent viscosity, but decreased maximum temperature rise and 28 day compressive strength. It was found that monocalcium phosphate was found to be inappropriate for portland cement based material. Applicability of dicalcium and tricalcium phosphates for portland cement needs to be evaluated with further investigation, including the long term compressive strength development.

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.

Cavitation resistance of concrete containing different material properties

  • Kumar, G.B. Ramesh;Bhardwaj, Arjit;Sharma, Umesh Kumar
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • In the present investigation, influence of various material parameters on the cavitation erosion resistance of concrete was investigated on the basis of laboratory experiments. As there is no well-established laboratory test method for evaluating the cavitation resistance of concrete, a test set up called 'cavitation jet' was specially established in the present study in order to simulate the cavitation phenomenon experienced in the hydraulic structures. Various mixtures of concrete were designed by varying the grade of concrete, type and quantity of pozzolana, type of aggregates and cement type to develop good cavitation resistant concrete constructed using marginal aggregates. Three types of aggregates having three different Los Angeles abrasion values (less than 30%, between 30% and 50% and more than 50%) were employed in this study. To evaluate the cavitation resistance a total of 60 cylindrical specimens and 60 companion cubes were tested in the laboratory respectively. The results indicate that cavitation resistance of concrete degrades significantly as the L.A. abrasion value of aggregates goes beyond the 30% value. Incorporation of pozzolanic admixtures was seemed to be beneficial to enhance the cavitation resistance of concrete. Influence of other material parameters on the cavitation resistance of concrete was also noted and important observations have been made in the paper.

A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS (Repaired glass ionomer cement의 결합강도에 관한 연구)

  • Seo, Su-Jeong;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

EFFECT OF THE ADDITIONAL ETCHING PROCEDURE ON PUSH-OUT BOND STRENGTH OF ONE-STEP RESIN CEMENT (부가적 부식 과정이 단일 접착 과정 레진 시멘트의 접착 강도에 미치는 영향)

  • Kang, Soon-Il;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of additional etching procedure prior to Maxcem resin cement application in indirect restoration cementation using push-out bonding strength. One hundred and two extracted human molars were used to make indirect resin restorations of gold inlay and Synfony. These restorations were cemented using Maxcem and Variolink II. Additional etching procedures were done for one group with Maxcem. Three groups have 17 specimens in both restoration types. Push-out bond strength was measured using multi-purpose tester and calculated for bonding strength per sqaure-millimeter area. The mean bonding strength values were compared using SPSS 12.0K program for one-way ANOVA and Scheffe's Test with 95% significance. Under the condition of this study, the additional etching procedure prior to usage of Maxcem resulted in reduced bond strength for both of restoration types.

THE FRACTURE RESISTANCE AND STRESS DISTRIBUTION OF ALL CERAMIC CROWNS WITH TWO TYPES OF FINISH LINE ON MAXILLARY CENTRAL INCISOR (상악중절치에서 전부도재관의 finish line형태에 따른 파절강도와 응력 분포에 관한 연구)

  • Ki Tae-Seok;Kim Kyea-Soon;Lee Jin-Han;Kim Yu-Lee;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.405-420
    • /
    • 2003
  • Purpose : The purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown. and 0.5mm width chamfer finish lines on the maxillary central incisor. Material and method : After 15 metal dies were made for each group, the IPS Empress all ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the metal die. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co. Germany)was used to measure the fracture strength with loading on the incisal edge. And also, three-dimensional finite element stress analysis was used to measure the stress distribution with the various types of the finish lines(1.0mm width rounded shoulder, 0.5mm width chamfer), the loading site(incisal edge, incisal $\frac{1}{3}$) and the type of loading(concentration loading, distribution loading). Results and conclusion : 1. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(876N) and the mean fracture strength of chamfer(882N) did not skew any significant difference between each other(p>0.05). 2. The stress distribution of all ceramic crown in three dimensional finite element analysis showed concentration aspect at loading point and cervical area or labial surface. 3. In metal die, there were no differences in stress distribution between finish lines, but in natural teeth model, chamfer finish line showed higher stress than rounded shoulder finish line. 4. When force was loaded on the incisal edge the stress was concentrated on the incisal edge and the cervical area of labial surface. When force was loaded on the incisal $\frac{1}{3}$, the stress concentrated on the cervical area of labial surface and the cingulum area. 5. Generally, natural teeth model showed higher and various stress than the metal die.

Comparison of Elastic Moduli of Subgrade Soils Using Plate Loading Test, Soil Stiffness Gauge and Dynamic Cone Penetrometer (평판재하시험, 흙강성측정기 및 동적콘관입시험기를 이용한 노상토의 탄성계수 비교)

  • Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2015
  • This paper describes the correlation and relationship between elastic moduli measured by three stiffness measurement methods with different mechanical characteristics to evaluate the compaction characteristics of subgrade soils. The Soil Stiffness Gauge (SSG) with very small strain (${\approx}0.001%$) ranges, static Plate Loading Test (PLT) with mid-level strain (${\approx}0.01{\sim}0.1%$) ranges, and Dynamic Cone Penetrometer (DCP) using penetration resistance were implemented to measure the elastic modulus. To use the elastic modulus measured by different measurement methods with a wide range of strain in practice, it is required to identify the correlation and relationship of measured values in advance. The comparison results of the measured elastic moduli ($E_{SSG}$, $E_{PLT}$, $E_{DCP}$) using the three measurement methods for domestic and overseas subgrade soils under various conditions indicate that the evaluated elastic modulus relies on the types of soils and the level of stress condition. The correlation analysis of the measured elastic moduli except the data of cement treated soils indicates that the static elastic modulus ($E_{PLT}$) is evaluated as about 60 to 80% of the dynamic elastic modulus ($E_{SSG}$). Unusual soils such as cement treated soils are required to be corrected by the stress correction during the correlation analysis with typical soils, because these types of soils are sensitive to the stress condition when measuring the static elastic modulus ($E_{PLT}$) of soils. In addition, when considering the use of DCP data for the evaluation of the elastic modulus ($E_{DCP}$), the measured data of the elastic modulus less than 200 MPa show more reliable correlation.

Effect of Accelerated Aging on the Color Stability of Dual-Cured Self-Adhesive Resin Cements

  • Kim, Ah-Rang;Jeon, Yong-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • Purpose: The effect of accelerated aging on color stability of various dual-cured self-adhesive resin cements were evaluated in this study. Materials and Methods: Color stability was examined using three different brands of dual-cured self-adhesive resin cements: G-CEM LinkAce (GC America), MaxCem Elite (Kerr), and PermaCem 2.0 (DMG) with the equivalent color shade. Each resin cement was filled with Teflon mold which has 6 mm diameter and 2 mm thickness. Each specimen was light cured for 20 seconds using light emitting diode (LED) light curing unit. In order to evaluate the effect of accelerated aging on color stability, color parameters (Commission Internationale de l'Eclairage, CIE $L^*$, $a^*$, $b^*$) and color differences (${\Delta}E^*$) were measured at three times: immediately, after 24 hours, and after thermocycling. The $L^*$, $a^*$, $b^*$ values were analyzed using Friedman test and ${\Delta}E^*$ values on the effect of 24 hours and accelerated aging were analyzed using t-test. These values were compared with the limit value of color difference (${\Delta}E^*=3.7$) for dental restoration. One-way ANOVA and Scheff's test (P<0.05) were performed to analyze each ${\Delta}E^*$ values between cements at each test period. Result: There was statistically significant difference in comparison of color specification ($L^*$, $a^*$, $b^*$) values after accelerated aging except $L^*$ value of G-CEM LinkAce (P<0.05). After 24 hours, color difference (${\Delta}E^*$) values were ranged from 2.47 to 3.48 and $L^*$ values decreased and $b^*$ values increased in all types of cement and MaxCem Elite had high color stability (P<0.05). After thermocycling, color change's tendency of cement was varied and color difference (${\Delta}E^*$) values were ranged from 0.82 to 2.87 and G-CEM LinkAce had high color stability (P<0.05). Conclusion: Color stability of dual-cured self-adhesive resin cements after accelerated aging was evaluated and statistically significant color changes occurred within clinically acceptable range.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.