• Title/Summary/Keyword: three dimensional vision

Search Result 219, Processing Time 0.031 seconds

Development of a Measurement System for Axial-symmetric Objects Using Vision Sensor (시각센서를 이용한 축대칭 물체 측정 시스템 개발)

  • Lee, S.R.;Kim, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.34-41
    • /
    • 1997
  • The dimension measurement problem of products has been a major concern in the quality control in the industrial fields. A non-contacting measurement system using the vision sensor is proposed in this paper. The system consists of a CCD camera for the image capture, a frame grabber for the acquired image processing, a laser unit for the illumination, scanning unit for the measurement, and a personal computer for the geometry computation. The slit beam which is generated by passing the laser beam through a cylin- drical lens is fired to the axial-symmetric object on the rotating plate. The image of objects reflected by the laser slit beam, acquired by the CCD camera, becomes much brighter than the other parts of objects. After the histogram of brightness for the captured image is calculated, low intensity pixels are filtered out by threshold method. The performance of proposed measurement system is obtained for several different axial symmetric objects. The proposed system is verified as a good tool for measuring axial-symmetric parts in a limited condition with a minor investment cost.

  • PDF

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

Dimension Measurement for Large-scale Moving Objects Using Stereo Camera with 2-DOF Mechanism (스테레오 카메라와 2축 회전기구를 이용한 대형 이동물체의 치수측정)

  • Cuong, Nguyen Huu;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • In this study, a novel method for dimension measurement of large-scale moving objects using stereo camera with 2-degree of freedom (2-DOF) mechanism is presented. The proposed method utilizes both the advantages of stereo vision technique and the enlarged visibility range of camera due to 2-DOF rotary mechanism in measuring large-scale moving objects. The measurement system employs a stereo camera combined with a 2-DOF rotary mechanism that allows capturing separate corners of the measured object. The measuring algorithm consists of two main stages. First, three-dimensional (3-D) positions of the corners of the measured object are determined based on stereo vision algorithms. Then, using the rotary angles of the 2-DOF mechanism the dimensions of the measured object are calculated via coordinate transformation. The proposed system can measure the dimensions of moving objects with relatively slow and steady speed. We showed that the proposed system guarantees high measuring accuracy with some experiments.

Development of Grading and Sorting System of Dried Oak Mushrooms via Color Computer Vision System (컬러 컴퓨터시각에 의거한 건표고 등급 선별시스템 개발)

  • Kim, S.C.;Choi, D.Y.;Choi, S.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.130-135
    • /
    • 2007
  • An on-line real time grading and sorting system for dried oak mushrooms was developed for on-site application. Quality grades of the mushrooms were determined according to an industrial specification. Three dimensional visual quality features were used for the grading. A progressive color computer vision system with white LED illumination was implemented to develop an algorithm to extract external quality patterns of the dried oak mushrooms. Cap (top) and gil (stem) surface images were acquired sequentially and side image was obtained using mirror. Algorithms for extracting size, roundness, pattern and color of the cap, thickness, color of the gil and amount of rolled edge of the dried mushroom were developed. Utilizing those quality factors normal and abnormal ones were classified and normal mushrooms were further classified into 30 different grades. The sorting device was developed using microprocessor controlled electro-pneumatic system with stainless buckets. Grading accuracy was around 97% and processing time was 0.4 s in average.

System for Measuring the Welding Profile Using Vision and Structured Light (비전센서와 구조화빔을 이용한 용접 형상 측정 시스템)

  • Kim, Chang-Hyeon;Choe, Tae-Yong;Lee, Ju-Jang;Seo, Jeong;Park, Gyeong-Taek;Gang, Hui-Sin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.50-56
    • /
    • 2005
  • The robot systems are widely used in the many industrial field as well as welding manufacturing. The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot tracking, many kinds of contact and non-contact sensors are used. Recently, the vision is most popular. In this paper, the development of the system which measures the shape of the welding part is described. This system uses the line-type structured laser diode and the vision sensor. It includes the correction of radial distortion which is often found in the image taken by the camera with short focal length. The Direct Linear Transformation (DLT) method is used for the camera calibration. The three dimensional shape of the parent metal is obtained after simple linear transformation. Some demos are shown to describe the performance of the developed system.

  • PDF

A Study on the 3-dimensional feature measurement system for OMM using multiple-sensors (멀티센서 시스템을 이용한 3차원 형상의 기상측정에 관한 연구)

  • 권양훈;윤길상;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.158-163
    • /
    • 2002
  • This paper presents a multiple sensor system for rapid and high-precision coordinate data acquisition in the OMM (On-machine measurement) process. In this research, three sensors (touch probe, laser, and vision sensor) are integrated to obtain more accurate measuring results. The touch-type probe has high accuracy, but is time-consuming. Vision sensor can acquire many point data rapidly over a spatial range but its accuracy is less than other sensors. Also, it is not possible to acquire data for invisible areas. Laser sensor has medium accuracy and measuring speed among the sensors, and can acquire data for sharp or rounded edge and the features with very small holes and/or grooves. However, it has range- constraints to use because of its system structure. In this research, a new optimum sensor integration method for OMM is proposed by integrating the multiple-sensor to accomplish mote effective inspection planning. To verify the effectiveness of the proposed method, simulation and experimental works are performed, and the results are analyzed.

  • PDF

Virtual Spatial Database Creation for Application of Three Dimensional GIS (3차원 GIS 적용을 위한 가상공간 데이터베이스 구축)

  • 안기원;신석효;김상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • Generally, feature of real world as 2-dimensional information of point, line and polygon achieve a GIS function from 2-dimensional GIS. But at enduring the geography elements which exist when it is composed of 3-dimensional spatial information it is abstracted with 2-dimensional which will reach, the loss of many information and 2-dimensional GIS of existing the basic limit exists md, Accordingly, 3-dimensional geography elements of the real world even at the computer controlling with 3-dimensional geography element original it will be able to minimize the loss of information which it keeps, for 3-dimensional expression and the analysis against the natural facility and the artificial facility of the real world it is the actual condition whose 3-dimensional GIS of ultimate form are necessary. This study was 2-dimensional feature a point the line and polygon and 3-dimensional spatial data information as the method for to use the VRML(Virtual Reality Modeling Language), 3-dimensional virtual worlds for 3-dimensional GIS applications to create and hereafter various decision making of at connection web more efficient and the possibility of doing in vision in order to be, it drew up a spatial database.

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.

Development and Evaluation of the V-Catch Vision System

  • Kim, Dong Keun;Cho, Yongjoo;Park, Kyoung Shin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • A tangible sports game is an exercise game that uses sensors or cameras to track the user's body movements and to feel a sense of reality. Recently, VR indoor sports room systems installed to utilize tangible sports game for physical activity in schools. However, these systems primarily use screen-touch user interaction. In this research, we developed a V-Catch Vision system that uses AI image recognition technology to enable tracking of user movements in three-dimensional space rather than two-dimensional wall touch interaction. We also conducted a usability evaluation experiment to investigate the exercise effects of this system. We tried to evaluate quantitative exercise effects by measuring blood oxygen saturation level, the real-time ECG heart rate variability, and user body movement and angle change of Kinect skeleton. The experiment result showed that there was a statistically significant increase in heart rate and an increase in the amount of body movement when using the V-Catch Vision system. In the subjective evaluation, most subjects found the exercise using this system fun and satisfactory.

A Dynamic Model of the Human Lower Extremity (하지의 동역학 모델)

  • Choi, Gi-Young;Son, Kwon;Jung, Min-Geun
    • Proceedings of the ESK Conference
    • /
    • 1993.04a
    • /
    • pp.1-9
    • /
    • 1993
  • A human gait study is required for the biomechanical design of running shoes. A tow-dimensional dynamic model was developed in order to analyze lower extremity kinematics and loadings at the right ankle, knee, and hip joints. The dynamic model consists of three segments, the upper leg, the lower leg, and the foot. Each segment was assumed to be a rigid body with one or two frictionless hinge joints. The lower extremity motion was assumed to be planar in the sagittal plane. A young male subject was involved in the gait test and his anthropometric data were measured for the calculation of segement mass and moment of inertia. The experimental data were obtained from three trials of walking at 1.2m/s. The foot-floor reaction data were measured from a Kistler force plate. The kinematic data were acquired using a three-dimensional motion measurement system (Expert Vision) with six markers, five of which were placed on the right lower extremity segments and the rest one was attached to the force plate. Based on the model and experimental data for the stance phase of the right foot, the calculated vertical forces reached up to 492, 540, and 561 N at the hip, knee, ankle joints, respectively. The flexion-extension moments reached up to 155, 119, and 33 Nm in magnitude at the corresponding joints.

  • PDF