• Title/Summary/Keyword: three dimensional shape

Search Result 1,472, Processing Time 0.029 seconds

Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis (3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가)

  • 김태순;박치용;김진원;박재학
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

Application of Three-dimensional Reconstruction in Esophageal Foreign Bodies

  • Chang, Ji-Min;Yoo, Young-Sam;Kim, Dong-Won
    • Journal of Chest Surgery
    • /
    • v.44 no.5
    • /
    • pp.368-372
    • /
    • 2011
  • This study was conducted to investigate the clinical application of three-dimensional (3D) reconstructed computed tomography (CT) images in detecting and gaining information on esophageal foreign bodies (FBs). Two patients with esophageal FBs were enrolled for analysis. In both cases, 3D reconstructed images were compared with the FB that was removed according to the object shape, size, location, and orientation in the esophagus. The results indicate the usefulness of conversion of CT data to 3D images to help in diagnosis and treatment. Use of 3D images prior to treatment allows for rapid prototyping and surgery simulation.

Three-Dimensional Finite Element Modeling of Laser Cladding Process (레이저 클래딩 공정의 3차원 유한요소 모델링)

  • Zhao Guiping;Si Ho-Mun;Lee Heungshik;Cho Chongdu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.279-288
    • /
    • 2004
  • This paper describes a three-dimensional transient finite element model for a laser cladding process. In the model, an adaptive finite element technique is used for dilution control. Using the proposed finite element model, the effects of process parameters such as scanning speed, laser's power, and preheating on the dilution of clad layer, the shape of melting pool, and the temperature distribution are calculated. It is also shown that the optimal process parameters for the required dilution can be determined from the proposed finite element model. An experiment is performed to validate the proposed model. The numerical results are compared with experimental ones.

Estimation of fabric properties using Cusick Drape simulation (Cusick Drape 시뮬레이션을 이용한 옷감의 물성 예측)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.80-81
    • /
    • 2022
  • In this paper, the physical properties of actual fabric data are predicted using the Cusick drape system, which is a means of measuring the physical properties of fabrics. Using a three-dimensional volumetric system, the cloth data of the actual Cusick drape system is acquired in a three-dimensional point cloud format. Cusick drape simulation is performed using mesh data of the same shape and size as the fabric, and the physical parameters of the draped fabric most similar to the actual draped fabric are acquired.

  • PDF

Evaluation of Optimization Models for a Dimpled Channel to Enhance Heat Transfer (딤플 유로의 열전달 증진을 위한 최적화모델 비교)

  • Shin, Dong-Yoon;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2552-2557
    • /
    • 2007
  • Shape optimization of an internal cooling passage with staggered dimples on single surface is performed and performances of surrogates are evaluated in this paper. Optimizations are performed so that turbulent heat transfer can be enhanced compromising with pressure loss due to friction. The three-dimensional governing differential equations have been solved to find the overall Nusselt number and friction factor which are related to the objective functions of this problem. Three design variables were selected among the dimensionless geometric variables. Basic surrogate models such as second order polynomial response surface approximation (RSA), Kriging meta-modeling technique, radial basis neural network (RBNN), and derived press based averaged (PBA) surrogate model are constructed. The optimal points are searched from the above constructed surrogates by sequential quadratic programming (SQP). It is shown that use of multiple surrogates can increase the robustness in prediction of better design with minimum computational cost.

  • PDF

Design Optimization of Nozzle Shape for a Jet Fan (제트송풍기 노즐의 형상최적설계)

  • Seo Seoung-Jin;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.715-721
    • /
    • 2006
  • In the present work, nozzle shape of a jet fan is optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis. Standard $k-{\epsilon}$ model is used as a turbulence closure. Response surface method is employed as an optimization technique. The objective function is defined as maximum throw distance. Three geometric variables, i.e., length and angle of nozzle, and interval between two nozzles, are selected as design variables. As the main result of the optimization, the throw distance has been improved effectively.

Heat Transfer Analysis of EGR Cooler with Different Tube Shape (튜브형상에 따른 배기가스 재순환 냉각 장치 열전달 성능 평가)

  • Sohn, Chang-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.112-117
    • /
    • 2007
  • With the Euro-4 regulation coming into effect, the domestic car industry is forced to look for newer options to reduce NOX in the exhaust. EGR(Exhaust Gas Recirculation) Cooler is an effective method for the reduction of NOX form a diesel engine. High efficiency, low pressure loss and compactness are desirable features of an EGR Cooler. The cooling performance of EGR depends on the shape of tubes and the location of the entrance and exit. This paper reports the computational work conducted to estimate the performance of EGR cooler with three different cross section tubes and a triangular spiral tube. Three dimensional computation results show that the triangular tube is more effective than circular and rectangular tube. The most effective geometry is a triangular spiral tube with offset inlet and outlet locations.

Optimization for Flow Uniformity on the Selective Catalytic Reduction (SCR) System of a Steam Supply Boiler (열병합 보일러 SCR 장치의 유동 균일화를 위한 최적화 연구)

  • Park, Young-Bin;Jang, Choon-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.415-420
    • /
    • 2009
  • Selective Catalytic Reduction(SCR) has been used for the reduction of $NO_x$ in a steam supply boiler. Recently, the reduction of $NO_x$ becomes an important research field because of its negative effect on an environment. Shape optimization of circular poles installed in the chamber, which is located in upstream of a SCR, has been performed using response surface method and three-dimensional Navier-Stokes analysis to enhance gas flow uniformity. Three design parameters, diameter, arranging angle and stretching ratio of circular poles, are considered in the present study. Throughout the shape optimization of a circular pole, gas flow uniformity is successfully increased by decreasing local recirculation flow in a square duct chamber. Recirculation flow observed in the corner of the square duct can be reduced by proper installation of a guide vane or a blunt body. Detailed flow characteristics are also analyzed and discussed.

  • PDF

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Shape Optimization of Sedimentation Tank Using Response Surface Method (반응면기법을 이용한 침전조의 형상최적설계)

  • Kim, Hong-Min;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.