• Title/Summary/Keyword: three dimensional shape

Search Result 1,481, Processing Time 0.027 seconds

A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints (저항 다점용접부의 역학적 특성에 관한 연구)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

Parametric Body Model Generation for Garment Drape Simulation

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • A parametric body model generation system has been developed. Using various mathematic and geometric algorithms of this system, a three-dimensionally scanned human body can be converted into a resizable body model. Once a parametric body model is formed, its size and shape can be modified instantaneously by providing appropriate anthropometric data. To facilitate the subsequent pattern arrangement process for garment drape simulation, a bounding box generation algorithm has been developed in this study. Also the model can be converted into a set of parametric surfaces that it can also be used for three-dimensional garment pattern design system.

Shape Design and Prediction of Efficiency of Sedimentation Bed using Three-Dimensional Flow Analysis (삼차원 유동해석을 통한 침전조의 침전효율 예측 및 형상설계)

  • Cui Xiang-Zhe;Kim Hong-Min;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.95-98
    • /
    • 2002
  • Three-dimensional flow analyses for two different ratios of radius to height of sedimentation bed are implemented to evaluate the effect of blockage ratio of center feed wall and angle of distributor on sedimentation efficiency, and to find the optimal value of those parameters. Sedimentation efficiencies for three different shapes are compared with and without rotation speed. And then, five different combinations of blockage ratio of center feed wall and angle of distributor are compared It reveals that the effect of blockage ratio of center fled wall and angle of distributor is considerable to sedimentation efficiency while rotation effect can be neglected and $0.55 and 33^{\circ}$for blockage ratio of center food wall and angle of distributor, respectively, ive the best sedimentation efficiency.

  • PDF

Fast Garment Drape Simulation Using Geometrically Constrained Particle System

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • A simulation system for versatile garment drape has been developed. Using this system, the shape of a garment can be simulated in consideration of fabric physical properties as well as the interaction between fabrics and other objects. Each fabric piece in a garment is modeled using a geometrically constrained particle system and its behavior is calculated from an implicit numerical integration algorithm in a relatively short time. The system consists of three modules including a preprocessor for the preparation of fabric patterns and external objects, a postprocessor for the results of three-dimensional visualization, and a drape simulation engine. It can be used for the design process of textile goods, garments, furniture, or upholsteries.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Three-dimensional vortex structure near a corner of a translating plate (병진운동하는 평판의 모서리에서의 3차원 와류 구조 가시화)

  • Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Three-dimensional vortex structures in the corner region of translating normal plates are visualized experimentally with defocusing digital particle image velocimetry. Vortex formation processes for three plates with corner angle $60^{\circ}$, $90^{\circ}$, and $120^{\circ}$ are compared in order to study the effect of corner shape on vortex formation. In all cases, the self-induction of the starting vortex and its interaction with the potential flow induced by the moving plate cause the vortex to change its form dynamically after the plate starts to translate. While the vortex near a corner follows the plate in the low corner angle of $60^{\circ}$, the vortex separates early from the plate and its forward motion becomes slow in the high corner angle of $120^{\circ}$. It is also found that the starting vortex can transport inward at the corner, which depends on the corner angle.

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

A Model of the Mass Distribution of the Galaxy-III (은하계(銀河系)의 질량분포(質量分布) 모형(模型)-III)

  • Yu, Kyung-Loh;Kang, Yong-Hee
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.3-9
    • /
    • 1975
  • Densities of the three constituent spheroids of the same eccentricity as our earlier model of the Galaxy are assumed to be given by an analytical form of $_{{\rho}i}$(r)=$k_ie^{-m_ir^u{_i}}$, where $k_i,\;m_i$, and ${\alpha}i$ are obtained by comparing with the results of the previous model. Using three values of $_{{\rho}i}$(r) the galactic rotation curve, mass of each spheroid and the whole Galaxy are calculated, and the three dimensional density distribution in the Galaxy is also obtained. The calculated rotation curve of the model Galaxy is in good agreement with the observed curve, and the shape of the cross section of the model Galaxy given by the computed density is very similar to the inferred shape of the spiral galaxies.

  • PDF

Efficient Analysis for a Three-Dimensional Multistory Structure with Wings (여러 Wing들로 구성된 3차원 구조물의 효율적인 해석모델)

  • Moon, Seong Kwon;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.429-438
    • /
    • 1994
  • Three-dimensional analyses of multistory structures with wings using finite element models require tedious input data preparation, longer computation time. and larger computer memory. So this study lays emphasis on the development of efficient analysis models for a three-dimensional multistory structure with wings, including in-plane deformation of floor slabs. Since a three-dimensional multistory structure with wings is regarded as a combination of wing structures and their junction in this study, the proposed analysis models are easily applicable to multistory structures with plans in the shape of letters Y, U, H, etc. Dynamic analyses results obtained using proposed models are in excellent agreement to those acquired using three-dimensional finite element models in terms of natural vibration periods, mode shapes and displacement time history.

  • PDF