• Title/Summary/Keyword: three dimensional shape

Search Result 1,472, Processing Time 0.035 seconds

Effects of Multiple Reflections of Polarized Beam in Laser Grooving (레이저 홈가공에서 편광빔의 다중반사 효과)

  • Bang Se-Yoon;Seong Kwan-Je
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

A Void Fraction Measurement Technique by Single Camera and Its Application (단일 카메라를 이용한 이상유동 기포율 측정방법의 개발과 응용)

  • Choi, Dong-Whan;Yoo, Jung-Yul;Song, Jin-Ho;Sung, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.904-911
    • /
    • 2007
  • A measurement technique fur void fraction has been proposed using a time-resolved two-phase PIV system and the bubble dynamics has been investigated in gas-liquid two-phase flows. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side view image on a $45^{\circ}$ oriented mirror to be juxtaposed with the front view image. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was adopted. The present technique is applied to freely rising bubby flows in stagnant liquid. The results show that the increase of bubble flow rate gives rise to the increase of bubble size and rising velocity at first. If it goes over a certain level, the rising velocity becomes constant and the horizontal velocity grows bigger instead due to the obstruction of other bubbles.

A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process (쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구)

  • Kim Hyo-Chan;Lee Sang-Ho;Park Seung-Kyo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.177-186
    • /
    • 2006
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. Therefore, a new rapid manufacturing process, Rapid Heat Ablation process (RHA) using the hot tool, has been developed. In this paper, the hot tool for RHA process is designed to minimize radius of heat affected zone. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. In order to verify the numerical results, surface temperature of the hot tool is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. The practicality and effectiveness of the designed hot tool have been verified through experiments.

A Study on the Improvement of Accuracy of Surface Measurement in the Phase-Shifting Shadow Moir$\'{e}$ Method (위상이동 그림자 무아레방법을 이용한 형상측정법의 정확도 개선에 관한 연구)

  • 강영준;유원재;권용기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.96-102
    • /
    • 1998
  • In this study, the theory and application of phase-shifting shadow moire topography is focused on the non-contact measurement of object surfaces for practical use in the field of production engineering. Shadow moire topography has been studied during last few decades in the area of the optical physics, and now its mathmatical theory has been established. Generally, in case of the classical shadow moire topography, the sensitivity is a few tenths of millimeter in best cases. Here we tried the application of phase-shifting method to the conventional shadow moire topography. But the reference grating and the deformed grating are mutually dependent because it is impossible to obtain uniform phase shifts on the whole Held. Therefore it is difficult to use a phase-shifting method in shadow moire topography. However, it was shown that constant phase-shifting was able to be measured by moving both the grating and light source. Finally we obtained a better result by using this procedure and applied the phase-shifting shadow moire to three dimensional object measurement.

  • PDF

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts (레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화)

  • Jeong, Wonjong;Kwon, Young-Sam;kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

Three-Dimensional Simulations of the Jeans-Parker Instability

  • LEE SANG MIN;HONG SEUNG SOO;KIM AND JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.285-287
    • /
    • 2001
  • We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.

  • PDF

An Approach to the Design Parameter of Air-Cored Superconducting Synchronous Generator (공심형 초전도 동기발전기의 설계변수에 대한 연구)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.101-106
    • /
    • 2001
  • Air-cored superconducting synchronous generator(ASSG) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, in the case of the shape optimum design of ASSG, other design variables different from an iron-cored machine should be considered, which will lead to substantial improvement on the performance. The major design variables that are considered by using Three-dimensional Finite element Method(3D FEM) in this paper are : 1) field coil width, 2) axial length of magnetic shield, and 3) armature winding method. End-ring of armature winding is considered in the calculation of EMF. When it comes to field coil width, as field coil width enlarges, its effective field increases but the maximum field on the superconductor decreases. this determines the critical current density. this study presents an effective field coil width, axial length of magnetic shield, and armature winding method, and also the analysis is verified by the experimental results.

  • PDF