• Title/Summary/Keyword: three dimensional motion

Search Result 1,020, Processing Time 0.025 seconds

Video Content Manipulation Using 3D Analysis for MPEG-4

  • Sull, Sanghoon
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-135
    • /
    • 1997
  • This paper is concerned with realistic mainpulation of content in video sequences. Manipulation of content in video sequences is one of the content-based functionalities for MPEG-4 Visual standard. We present an approach to synthesizing video sequences by using the intermediate outputs of three-dimensional (3D) motion and depth analysis. For concreteness, we focus on video showing 3D motion of an observer relative to a scene containing planar runways (or roads). We first present a simple runway (or road) model. Then, we describe a method of identifying the runway (or road) boundary in the image using the Point of Heading Direction (PHD) which is defined as the image of, the ray along which a camera moves. The 3D motion of the camera is obtained from one of the existing 3D analysis methods. Then, a video sequence containing a runway is manipulated by (i) coloring the scene part above a vanishing line, say blue, to show sky, (ii) filling in the occluded scene parts, and (iii) overlaying the identified runway edges and placing yellow disks in them, simulating lights. Experimental results for a real video sequence are presented.

  • PDF

3-D analysis of sloshing motion in a fluid container with nonlinear boundary conditions (비선형 경계조건을 고려한 내부 유체의 3차원 자유수면 유동해석)

  • 김문겸;임윤묵;조경환;박종헌;이성민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.177-184
    • /
    • 2002
  • Large amplitude sloshing can occur in contained fluid region due to the seismic ground motion. Also, The pressure by large amplitude sloshing damages the connections between the wall and roof of a fluid container and causes outflow of contained fluid. Therefore, to predict the dynamic behavior accurately, three dimensional analysis with the nonlinear boundary condition must be performed. In this study, the numerical solution procedure is developed using the boundary element method with the Lagrangian particle approach. In order to demonstrate the accuracy and validity of the developed method, the fluid motion for a free oscillation with small amplitude and a forced vibration are analyzed. And the numerical results are compared with the linear theory results and the previous studies with the nonlinear boundary condition.

  • PDF

Dynamic behavior of footbridges strengthened by external cable systems

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.595-608
    • /
    • 2018
  • This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

A Simulation Model of the ACL Function Using MADYMO (마디모를 이용한 전방십자인대 기능 시뮬레이션 모델)

  • Park, Jung-Hong;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1408-1416
    • /
    • 2006
  • A mathematical knee model was constructed using MADYMO. The purpose of this study is to present a more realistic model of the human knee to reproduce human knee motion. Knee ligaments were modeled as line elements and the surrounding muscles were considered as passive restraint elements. A calf-free-drop test was performed to validate the suggested model. A calf was dropped from the rest at about 65 degree flexed posture in the prone position. The motion data were recorded using four video cameras and then three dimensional data were acquired by Kwon3D motion analysis software. The results showed that general shapes of angular quantities were similar in both the experiment and computer simulation. Functional stability of the anterior cruciate ligament was explicitly revealed through this model.

Waveload Analysis for Heeled Barges with Flooded Compartments (손상침수로 자세변화된 바지형 선박의 파랑하중해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.379-387
    • /
    • 2005
  • A ship may suffer sinkage and heel due to flood in a compartment caused by damage on a deck. The motion and waveloads of the heeled ship floating in waves have been analyzed by making use of a three dimensional potential theory taking account of the hydrodynamic pressure in the flooded compartments. The shear forces and bending moments due to radiation-diffraction waves have been calculated by the direct integration of the 3-d hydrodynamic pressure on the outer and inner hulls of floating barges. The motion responses and the relative flow rate across the mean free surface of the water in the flooded compartments are also presented.

3_D Time-Domain Analysis on the Motion of a Ship Advancing in Waves (파중 진행하는 선박의 3차원 시간영역 운동해석)

  • 홍도천;하태범;김대헌;송강현
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.164-168
    • /
    • 2001
  • The motion of a ship advancing in regular waves is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation. The ship motions in regular waves have been calculated by both the time and frequency domain methods. It has been shown that they agree very well with each other. The present time-domain method can be used to predict the time histories of unsteady motions in irregular waves. It can also be used to calculate the hydrostatic and Froude-Krylov forces over the instantaneous wetted surface of the ship hull to predict large ship motions, in a practical sense, advancing in large amplitude waves.

  • PDF

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Time-Domain Analysis on Motion Response of Adjacent Multiple-Bodies in Waves (파랑 중 근접한 다중 물체의 운동응답에 대한 시간영역 해석)

  • Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • This study considers the motion response of multiple adjacent floating bodies in waves. As a method of solution, a three-dimensional Rankine panel method is adopted in time domain. For the validation of the developed numerical method, the motions of two adjacent Series 60 hulls and ship-barge model are estimated. The computational results are compared with other numerical and experimental analyses, showing favorable agreement.

Development of a Dynamic Analysis Program for Tracked Vehicles (궤도차량을 위한 동특성 해석 프로그램 개발)

  • 최윤상;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

Effect of Foot Eversion on Knee and Ankle of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1505-1508
    • /
    • 2008
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

  • PDF