• Title/Summary/Keyword: three axes

Search Result 410, Processing Time 0.022 seconds

Robot Dynamic Analysis using Free-body-diagram (자동물체도를 이용한 로봇 동력학 해석)

  • O, Se-Hun
    • 연구논문집
    • /
    • s.22
    • /
    • pp.21-26
    • /
    • 1992
  • Dynamic analysis is important in structural design of SCARA or articulated type industrial robots and is' usually done to main three axes. In this paper, robot arm dynamics was analyzed using FBD(free body diagram). Though the proposed scheme becomes complex as DOF(degree of freedom)increases, it allows to see types and directions of forces and moments acting on the body. Therefore, the strength analysis of robot arm can be done relatively easy in a case of either closed or open loop chain. This method can be used for obtaining dynamic simulation at off-line programming system and calculating required torques at joints at on-line system.

  • PDF

A Study on Command Generation Methods of Reaction Control System for Upper Stage Attitude Control of Launch Vehicles (발사체 상단 자세제어용 추력기시스템 명령생성방식 연구)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Choi, Kyung-Jun;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 2014
  • This paper suggests two kinds of reaction control system command generation methods for upper stage attitude control of launch vehicles. The reaction control system is assumed to consist of two sets of three nozzles. One operation technology is based on mixed attitude error functions, and the other is based on command mixing functions. Both are compared via simulations. The simulation results show that the latter is comparatively preferable in terms of interference among control axes, independency of controller design and analysis among axes, and prediction of flight performance of each control axis.

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Effect of the seismic excitation angle on the dynamic response of adjacent buildings during pounding

  • Polycarpou, Panayiotis C.;Papaloizou, Loizos;Komodromos, Petros;Charmpis, Dimos C.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1127-1146
    • /
    • 2015
  • The excitation angle or angle of incidence is the angle in which the horizontal seismic components are applied with respect to the principal structural axes during a time history analysis. In this study, numerical simulations and parametric studies are performed for the investigation of the effect of the angle of seismic incidence on the response of adjacent buildings, which may experience structural pounding during strong earthquakes due to insufficient or no separation distance between them. A specially developed software application has been used that implements a simple and efficient methodology, according to which buildings are modelled in three dimensions and potential impacts are simulated using a novel impact model that takes into account the arbitrary location of impacts and the geometry at the point of impact. Two typical multi-storey buildings and a set of earthquake records have been used in the performed analyses. The results of the conducted parametric studies reveal that it is very important to consider the arbitrary direction of the ground motion with respect to the structural axes of the simulated buildings, especially during pounding, since, in many cases, the detrimental effects of pounding become more pronounced for an excitation angle different from the commonly examined 0 or 90 degrees.

Countermovement of the Segments During the Tae-kwon-do Roundhouse Kicking (태권도 돌려차기 시 분절들의 반동동작)

  • Hwang, In-Seong;Lee, Sung-Cheol;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.139-152
    • /
    • 2004
  • Two subjects, an expert and a novice, were carefully selected based upon their foot speed. Three dimensional videography was used in the assessment of roundhouse kicking of the Tae-kwon-Do. The local reference frames were imbedded at the trunk, pelvis, thigh and shank. Anatomical angular displacement at the joints were measured by projecting the upper segment's local axes to the lower segment's local reference planes. The local axes again projected to the global reference frames and absolved each segment's movement. The peaks of the anatomical angular displacement curve assessed as the countermovements and the angular movements of the segments in the global space absolved in light of the occurrence of the countermovements. The expert showed larger and more countermovements than the novice at the all segments. The counterrnovement occured more clearly at the trunk than the hip and knee joint and during the preparative movement phase. These countermovements occurrence were due to either by turning upper or lower segments and controlled by the turning direction and sequence of the two nearby segments. It was revealed that the countermovements of the trunk during the preparative movement phase was the important factor of the power kicking.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table (초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구)

  • Shim, Jongyoup;Park, Chun-Hong;Song, Chang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

A concept of multi -layered database for management and maintenance of civil infrastructures (사회기반 시설물의 유지관리를 위한 multi-layered 데이터베이스 개념)

  • Kim, Bong-Geun;Yi, Jin-Hoon;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.725-730
    • /
    • 2007
  • A framework of multi layered database is proposed for the integrated operation of civil infrastructure information in this study. The multi-layered database is a logically integrated database composed of standardized information layers. The framework of multi-layered database is defined by three axes, national assets, lifetime, and data levels. The axis of national assets indicates civil infrastructures such as bridges, dams, tunnels and power plants that can be considered as national key structures. The axes of lifetime and data levels indicate the standardized information layers generated from the life-phase of civil infrastructure and the priority of data in the information layers, respectively. The standardized information layers are basically composed of reusable data sets defined by information models. A prototype of standard database for steel bridges is constructed based on the framework as a proof of concept. Demonstration examples such as data consistency check and automatic generation of a FEA model show that the proposed concept can assure the sustainable interoperability of civil infrastructure information as well as design information of steel bridges.

  • PDF

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.