• Title/Summary/Keyword: tholeiite

Search Result 9, Processing Time 0.026 seconds

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.

Geochemical Characteristics of the Sub-alkaline Basalt in the Udo Island, Jeju (제주도 우도 화산섬의 서브알칼리 현무암의 지화학적 특징에 대하여)

  • Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.601-610
    • /
    • 2014
  • Udo is the site of a short-lived monogenetic submarine volcanic vent which builts basaltic clastic deposits below sea level, by early Surtseyan-type explosive eruption and later effusive lava eruptions. Mineral assemblage, major and trace element chemistry indicate that the Someori sub-alkaline lava flows were related to the WPTB(within plate tholeiitic basalt) rather than IAT(island-arc tholeiite) and that the geotectonic regime of Korean Peninsula went away from the subduction zone after the Later Miocene.

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

Sr-Nd-Pb Isotopic Compositions of Lavas from Cheju Island, Korea (제주도 화산암류의 Sr-Nd-Pb 동위원소 연구)

  • 박준범;박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 1996
  • Sr, Nd and Pb isotopic characteristics of alkaline lavas and tholeiites in Cheju Island show that the isotopic compositions of the former slightly overlap, but have relatively more depleted than the latter. However, in viewpoint of the two eruptional stratigraphies of tholeiites, the isotopic compositon of the older one is similar to those of alkaline rocks in Lava Plateau Stage after Lee (1982). These suggest that the parental magmas of alkaline lavas and tholeiites might have originated from the homogenous mantle sourve and that the characteristics of the mantle source to be partially melted might be different between the eruption stages. The isotopic signatures of the bolcanic rocks in Cheju Island overlap with those in Samoa Islands and South China Basin, indicating the DMM-EM IImixing trend. This is distingushed from the DMM-EM I trend of the Cenozoic volcanic rocks in Korea except for cheju Island and Northeastern China. The modelled binary mixing calculation between MM and EM IImaterials indicates that the mantle source of the volcanic rocks in Cheju Island has been mixed about less than 10% of enriched mantle material (EM II) with depleted mantle material (DMM). Concerned with the indentation model between North China Block (NCB) and South China Block (SCB) after Yin an Nie (1993), we suggest that the distinct isotopic features of DMM-EM I and DMM-EM IIof the Cenozoic volcanic rock in Korea as well as China can be explained by the difference of the nature of subcontinental lithospheric mantle as enriched mantle materials, i.e. EM I of NCB, while EM II of SCB.

  • PDF

Geochemistry of Precambrian Mafic Dikes in Northern Michigan, U.S.A.: Implications for the Paleo-Tectonic Environment (북부 미시간 지역에 분포하는 선캠브리아기의 염기성 암맥에 대한 지화학적인 연구)

  • Wee, Soo Meen
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.447-463
    • /
    • 1991
  • Petrological and chemical studies of Precambrian dikes in the southern Lake Superior region were conducted with the objects of evaluating magma source and constraining models for the paleo-tectonic environment. Forty-six samples were analyzed for major, trace, and rare earth elements. Chemical data of the studied dikes are typical of continental tholeiites and showing iron-enrichment fractionation trend. With wallrock contamination carefully evaluated, a series of tectonic discriminating methods utilizing immobile trace elements indicate that the source magma was a high-Ti tholeiitic basalt similar to present-day T-type MORB. Effect of chemical contamination from wallrock assimilation accmulates with increasing differentiation. Evolved rocks show LREE enriched patterns and have enhanced levels of LIL elements (e.g., Rb, K, Ba, Th), but low levels of high field strength elements (e.g., Nb, P, Ti) with respect to their neighboring elements. It is suggested from this study that this enrichment possibly due to a combination of a feature inherited from the subcontinental lithosphere and crustal contamination. Geochemical signatures of these rocks are distinctively different from those of arc-related volcanics. Comparisons with chemistries of modern magmas show a pattern of overlap between Within-plate and ocean-floor characteristics, and chemical signatures of these rocks favor a model of intrusion into a crustal environment undergoing lithospheric attenuation.

  • PDF

XRF Analysis and Polarizing Microscopic Study of the Lava Cave Formation, Korea, Japan and Russia (한국, 일본, 러시아 용암동굴 형성층의 형광X선 분석과 편광현미경적 연구)

  • Sawa, Isao;Furuyama, Katsuhiko;Ohashi, Tsuyoshi;Kim, Chang-Sik;Kashima, Naruhiko
    • Journal of the Speleological Society of Korea
    • /
    • no.74
    • /
    • pp.23-31
    • /
    • 2006
  • (1) Kaeusetgul Cave in Kimnyong-Ri, Jeju-Do, Korea. Kaeuset-gul Cave (KC) is situated in NNE area of the Manjang-gul cave (125m a.s.l.). Kaeuset-gul Cave lies at $126^{\circ}45'22"$ E in longitude and $33^{\circ}33'09"$ N in latitude. The coast belong Kimnyeong-Ri, Kujwa-eup, Jeju-Do. Altitude of the cave-entrance is 10m and length of the cave is 90m. Lava hand-specimens of KC are studied by X-ray fluorescence analysis (XRF). Average major chemical components of specimens from KC is as follows (wt.%); $SiO_2=47.03$, $TiO_2=3.16$, $Al_2O_3=18.41$, FeO*=13.53, MnO=0.14, MgO=5.05, CaO=8.66, $Na_2O=2.81$, $K_2O=0.67$, $P_2O_5=0.55$ in KC. Polarizing microscopic studyindicates that these specimens are described of alkali-basalt. (2) Tachibori Fuketsu (Cave) in Shizuoka Prefecture, Fuji Volcano, Japan Tachibori Fuketsu lies attoward the south in skirt of the Fuji volcano, $138^{\circ}42'04"$ east longitude and $35^{\circ}18'00"$ north latitude. The location of cave entrance is 2745, Awakura, Fujinomiya-shi, Shizuoka Prefecture. The above sea level and length of Tachibori Fuketsu are 1,170m and 82m. Average major chemical components of specimens from cave areas follows (Total 100 wt.%) ; ($SiO_2$=50.52, $TiO_2$=1.69, $Al_2O_3$=15.47, FeO*=13.13, MnO=0.20, MgO=5.97, CaO=9.17, $Na_2O$=2.52, $K_2O$=0.94 and $P_2O_5=0.40).$ Polarizing microscopic study indicates that these specimens may belong to tholeiite-basalt series. According to polarizing microscopic study, Au (Augite), P1 (Plagioclase), and O1 (Olivine) are contained as phenocryst minerals. (3) Gorely Cave in Kamchatka Peninsula, Russia Gorely caldera is located at the southeastern part of Kamchatka Peninsula, about 75km southwest of Petropavlovsk-Kamchatskiy.. Gorely lava caves are situated in NHE area of Mt. Gorely volcano (1829m a.s.1.). One of lava cave (Go-9612=K-1) lies at $158^{\circ}00'22"$ east longitude and $52^{\circ}36'18"$ north latitude. The elevation of cave entrance is about 990m a.s.1. and the main cave extends in the NNW direction for about 50m by 15m wide and 5m in depth. The cave of K-3is near the K-1 cave. "@Lava hand-specimens K-1 and K-3 caves are studied by X-ray fluorescence analysis and polarizing microscopic observation. Average major chemical components of specimens from these caves are as follows (wt.%) ;($SiO_2$=55.12, $TiO_2$=1.25, $Al_2O_3$=16.07, T-FeO* =9.41, MnO=0.16, MgO=5.01, CaO=7.21, $Na_2O$=3.39, $K_2O$=1.92, $P_2O_5$=0.45) and these values indicate that the Gorely basaltic andesite belong to high alumina basalt. Polarizing microscopic study indicates that these specimens are described of Augite andesite.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.