• Title/Summary/Keyword: thin-walled composites

Search Result 37, Processing Time 0.021 seconds

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

Cross-sectional Constants of Thin-walled Composite Blades with Elliptical Profiles (타원형 단면형상을 갖는 복합재료 박판 블레이드의 단면상수 계산)

  • 박일주;이주영;정성남;신의섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.95-98
    • /
    • 2003
  • In this work, a closed-form analysis is performed to obtain the stiffness coefficients of thin-walled composites beams with elliptical profiles. The analytical model includes the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against MSC/NASTRAN results for coupled composites beams with single-cell elliptical sections. Very good correlation has been noticed for the test cases considered.

  • PDF

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

Interlaminar Normal Stress Effects in Cylindrical Tubular Specimens of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.406-409
    • /
    • 2017
  • The thin-walled cylindrical tubes are frequently used for the evaluation of fatigue property of composites. But the curvature of the tubular specimen induces interlaminar normal stress which may affect the fatigue property. In this paper interlaminar normal stress effect on the fatigue behaviour of thin-walled graphite/epoxy tubes $[{\pm}45]_s$ composites was studied experimentally. It was concluded that the interlaminar normal stress induced by the curvature of the cylinder has no discernible effect on the fatigue life. But excessive internal pressure can produce the stiffness increase and this affects the fatigue life of the cylindrical tubular composite.

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator (끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composite thin-walled beam with a tip mass.

High-yield synthesis of thin multiwalled carbon nanotubes and their field emission characteristics

  • Jeong, Hee-Jin;Song, Young-Il;Choi, Ha-Kyu;Kim, Gil-Yong;Yu, Tong;Lim, Seong-Chu;Lee, Young-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1443-1446
    • /
    • 2005
  • We have synthesized thin multi-walled carbon nanotubes (t-MWCNTs) using a catalytic chemical vapor deposition (CCVD) method with FeMoMgO catalyst. The number of tube walls were 2 ${\sim}$ 6 with the corresponding diameters of 3 ${\sim}$ 6 nm. We obtained high production yield of over 3000 wt% compared to the weight of the supplied catalyst. These t-MWCNTs revealed the intermediate structural characteristics between single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs). We have also characterized the field emission properties such as turn-on field and emission current, and current degradation from these t-MWCNTs together with SWCNTs and MWCNTs.

  • PDF

Buckling of T-Shaped Composite Columns (T형 복합재료 기둥의 좌굴)

  • Lee Seungsik;Back Sung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.57-62
    • /
    • 2006
  • Composite thin-walled members for civil engineering application are mainly produced by pultrusion technique, and they are generally made of a polymeric resin system reinforced by E-glass fibers due to economical reason. This material combination results in low elastic moduli of the composite materials and makes the design of composite members to be governed by stability limit state. Therefore the buckling behavior of composite thin-walled members was experimentally investigated in the present study. Axial compression was applied on each specimens by a hydraulic ram and knife edge fixtures were placed at both ends to simulate simple boundary condition. Axial compression, lateral displacements and twisting at the mid-height of each specimen were measured by a set of transducers during buckling test. The experimental buckling loads were compared with analytical results obtained through isotropic formulas. In the calculation of analytical results, elastic properties such as Young's modulus(E) and shear modulus(G) were replaced with EL and GLT obtained from coupon tests, respectively.

Lateral-torsional buckling analysis of thin-walled composite beam (박벽 복합재료 보의 횡-비틀림 좌굴 해석)

  • 김영빈;이재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Inter-lamina Shear Strength of MWNT-reinforced Thin-Ply CFRP under LEO Space Environment

  • Moon, Jin Bum;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • In this paper, the inter-lamina shear strength (ILSS) of multi-wall carbon nanotube (MWNT) reinforced carbon fiber reinforced plastics (CFRP) and thin-ply composites were verified under low earth orbit (LEO) space environment. CFRP, MWNT reinforced CFRP, thin-ply CFRP and MWNT reinforced thin-ply CFRP were tested after aging by using accelerated ground simulation equipment. The used ground simulation equipment can simulate high vacuum ($2.5{\times}10^{-6}torr$), atomic oxygen (AO, $9.15{\times}10^{14}atoms/cm^2{\cdot}s$), ultraviolet light (UV, 200 nm wave length) and thermal cycling ($-70{\sim}100^{\circ}C$) simultaneously. The duration of aging experiment was twenty hours, which is an equivalent duration to that of STS-4 space shuttle condition. After the aging experiment, ILSS were measured at room temperature ($27^{\circ}C$), high temperature ($100^{\circ}C$) and low temperature ($-100^{\circ}C$) to verify the effect of operation temperature. The MWNT and thin-ply shows good improvement of ILSS at ground condition especially with the thin-ply. And after LEO exposure large degradation of ILSS was observed at MWNT added composite due to the thermal cycle. And the degradation rate was much higher under the high temperature condition. But, at the low temperature condition, the ILSS was largely recovered due to the matrix toughening effect.

Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.18-29
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that are bonded or embedded into the host structure.