• Title/Summary/Keyword: thin-walled

Search Result 698, Processing Time 0.027 seconds

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Evaluation of Lateral-Torsional Buckling Strength of I-Girder with Corrugated Web under Uniform Bending (균일한 휨모멘트가 작용하는 파형강판 복부판 I-거더의 횡-비틂 좌굴강도 평가)

  • Moon, Ji Ho;Yi, Jong Won;Choi, Byung Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • This paper presents theoretical and finite element analysis results for the lateral-torsional buckling of I-girders with corrugated web under uniform bending. Lateral-torsional buckling is a major design aspect for flexural members composed of thin-walled I-section. However, torsional rigidities such as the warping constants of the I-girders with corrugated web are not fully understood yet. In this paper, bending and pure torsional rigidities of I-girders with corrugated web are first described using the results of previous researchers. Then, the location of the shear center and the warping constants are derived. Using the derived section properties of I-girders with corrugated web, the lateral-torsional buckling strength is determined. Finite element analyses are conducted and the proposed lateral-torsional buckling strength of I-girders with corrugated web is successfully verified. Finally, the effects of corrugation profiles of the web on the lateral-torsional buckling load of I-girders with corrugated web are discussed.

An Improved AE Source Location by Wavelet Transform De-noising Technique (웨이블릿 변환 노이즈 제거에 의한 AE 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang;Joo, Young-Chan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.490-500
    • /
    • 2000
  • A new technique for the source location of acoustic emission (AE) in plates whose thichness are close to or thinner than the wavelength has been studied by introducing wavelet transform de-noising technique. The detected AE signals were pre-processed using wavelet transform to be decomposed into the low-frequency, high-amplitude flexural components and the high-frequency, low-amplitude extensional components. If the wavelet transform de-noising was employed, we could successfully filter out the extensional wave component, one of the critical errors of source location in plates by arrival time difference method. The accuracy of source location appeared to be significantly improved and independent of the setting of gain and threshold, plate thickness, sensor-to-sensor distance, and the relative position of source to sensors. Since the method utilizes the flexural component of relatively high amplitude, it could be applied to very large, thin-walled structures in practice.

  • PDF

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Acacia - The Fibre of Choice

  • Ginting, Eduward;Burman, Ann;Kim, Daniel
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.311-316
    • /
    • 2006
  • The role of short fibre pulp - Mixed Harwood, Eucalyptus, Aspen, Birch, etc for the manufacture of different grades of paper is very well recognized. At the same time, lots of efforts are in progress to maximize the advantages while preserving their own special property. Bleached Acacia Kraft Pulp (BAKP) is comparatively new entry but gained quick recognition. BAKP was introduced to the world market by South East Asian suppliers in the late 1990's. This paper discusses in detail the role and opportunities of use of short fibre pulps. A logical technical comparison has been made between BAKP and another short fibre grades. BAKP being a short, thin-walled fibre shows several similarities with Eucalyptus pulp in terms of good bulk and stiffness. Refining energy and strength properties are very similar, but the shorter fibres and thinner cell walls give an outstanding opacity and formation compared to other commercial short fibre pulps. The collapsed and band-shaped nature gives a matchless smoothness, enabling less calendaring and exceptional printing properties. BAKP is shown to give several advantages to fine paper manufactures, compared with a number of established short fibre pulps such as Brazilian and Chilean Eucalyptus, Canadian Aspen and Indonesian Mixed Hardwood. It is important to consider refining and calendaring conditions to achieve optimum performance. For outer layers of multiply board, Acacia gives excellent coverage due to its high opacity and uniform fibre distribution. Its low roughness property gives improved printability. For tissue products, Acacia gives unique property of superior softness both in terms of hand feel and bulk softness. The high fibre population gives an impression of much higher quality due to the higher opacity and good formation.

  • PDF

Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect (초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • In this paper, It is performing to the elastic and elasto-plastic large deformation series analysis using a numerical method for the initial deflection effect of the aluminum alloy rectangular plate in the elasto-plastic loading area patch loading size. It is assumed a boundary condition to be a simply supported condition and consider the initial deflection amplitude, aspect ratio. It examined the critical elastic buckling load and post-buckling behaviour of aluminium alloy A6082-T6 rectangular plate. It used a commercial program for the elastic and elasto-plastic deformation series analysis. If the initial deflection amplitude is smaller, the in-plane rigidity with increasing to load is reduced from the start and occurs significantly more increasing the amplitude. More higher the aspect ratio, the initial yield strength is gradually decreased, and the plate thickness thicker and occurs larger than the thin walled plate a reduction ratio of the initial yield strength of the patch loading size as 0.5.

Coenurosis of Yak, Bos grunniens, caused by Taenia multiceps: A Case Report with Molecular Identification in Qinghai Tibetan Plateau Area, China

  • Zhang, Xue-Yong;Jian, Ying-Na;Duo, Hong;Shen, Xiu-Ying;Ma, Yi-Juan;Fu, Yong;Guo, Zhi-Hong
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.423-427
    • /
    • 2019
  • Coenurosis is an important zoonotic helminthic disease caused by the larval stage of the tapeworm Taenia multiceps. This parasite typically infects the brain of the intermediate hosts, including sheep, goat, cattle and even humans. We report a case of T. multiceps infection in a yak confirmed by clinical symptoms, morphological characteristics, and molecular and phylogenetic analyses. The coenurus was thin-walled, whitish, and spherical in shape with a diameter of 10 cm. The parasite species was identified as T. multiceps by PCR amplification and sequencing of the 18S rRNA, cox1 and nad1 genes. Three gene sequences all showed high homology (all above 97%) with the reference sequences from different hosts. Moreover, phylogenetic reconstructions with the 3 published Taenia gene sequences confirmed that the Qinghai yak isolate was closely related to T. multiceps. Although there are advanced diagnosis and treatment methods for coenurosis, early infection is difficult to diagnose. Importantly, the findings of yak infection case should not be ignored due to its zoonotic potential.

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.