• Title/Summary/Keyword: thin film silicon solar cell

Search Result 170, Processing Time 0.034 seconds

Interfacial Microstructure and Electrical Properties of $Al_2O_3/Si$ Interface of Mono-crystalline Silicon Solar Cells (단결정 실리콘 태양전지에서 후열처리에 따른 $Al_2O_3/Si$ 계면조직의 특성 변화)

  • Paek, Sin Hye;Kim, In Seob;Cheon, Joo Yong;Chun, Hui Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • Efficient and inexpensive solar cells are necessary for photo-voltaic to be widely adopted for mainstream electricity generation. For this to occur, the recombination losses of charge carriers (i.e. electrons or holes) must be minimized using a surface passivation technique suitable for manufacturing. Recently it has been shown that aluminum oxide thin films are negatively charged dielectrics that provide excellent surface passivation of silicon solar cells to attract positive-charged holes. Especially aluminum oxide thin film is a quite suitable passivation on the rear side of p-type silicon solar cells. This paper, it demonstrate the interfacial microstructure and electrical properties of mono-crystalline silicon surface passivated by $Al_2O_3$ films during firing process as applied for screen-printed solar cells. The first task is a comparison of the interfacial microstructure and chemical bonds of PECVD $Al_2O_3$ and of PEALD $Al_2O_3$ films for the surface passivation of silicon. The second is to study electrical properties of double-stacked layers of PEALD $Al_2O_3$/PECVD SiN films after firing process in the temperature range of $650{\sim}950^{\circ}C$.

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Electrical Properties of Photovoltaic cells depending on Simulated design (모의 설계에 따른 Photovoltaic cells의 전기적 특성)

  • Choi, Hyun-Min;Jeong, In-Bum;Kim, Gwi-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.36-36
    • /
    • 2010
  • Currently, there are several newly developed energy resources for the future to replace petroleum resources such as hydrogen fuel cell, solar cell, wind power, and etc. Among them, solar cell has attracted a worldwide concern, because it has an enormous amount of resources. In general, a study of solar cells can be classified in to an area of bulk type and thin-film type. Inorganic solar cells based on silicon have been tremendously developed in technology and efficiency. However, since there are many lithographic steps, high processing temperature approximately $1000^{\circ}C$, and expensive raw materials, a manufacturing cost of device are nearly reaching a limit. Contrary to those disadvantages, organic solar cells can be manufactured at room temperature. Also, it has many advantages such as a low cost, easy fabrication of thin film, and possible manufacture to a large size. Because it can be made to be flexible, research and development on solar cells are actively in progress for the next generation. ever though an efficiency of the organic solar cell is low compared to that of inorganic one, a continuous study is needed. In this paper, we report optimal device structure obtained by a program simulation for design and development of highly efficient organic photovoltaic cells. we have also compared simulated results to experimental ones.

  • PDF

Analysis of Mechanism for Photovoltaic Properties and Bypass Diode of Crystalline Silicon and CuInxGa(1-x)Se2 Module in Partial Shading Effect (결정질 실리콘 및 CuInxGa(1-x)Se2 모듈의 부분음영에 따른 태양전지 특성 변화 및 바이패스 다이오드의 작동 메커니즘 분석)

  • Lee, Ji Eun;Bae, Soohyun;Oh, Wonwook;Kang, Yoonmook;Kim, Donghwan;Lee, Hae-Seok
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.196-201
    • /
    • 2015
  • This paper presents the impact of partial shading on $CuIn_xGa_{(1-x)}Se_2(CIGS)$ photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, $1.99{\times}10^{-5}A/cm^2$, which was higher than that of crystalline silicon, $8.11{\times}10^{-7}A/cm^2$.

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF

Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과)

  • Lee, Seung-Hun;Tark, Sung-Ju;Choi, Su-Young;Kim, Chan-Seok;Kim, Won-Mok;Kim, Dong-Hhwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.

Characteristics of ITZO Thin Films According to Substrate Types for Thin Film Solar Cells (박막형 태양전지 응용을 위한 ITZO 박막의 기판 종류에 따른 특성 분석)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1095-1100
    • /
    • 2021
  • In this study, ITZO thin films were deposited on glass, sapphire, and PEN substrates by RF magnetron sputtering, and their electrical and optical properties were investigated. The resistivity of the ITZO thin film deposited on the glass and sapphire substrates was 3.08×10-4 and 3.21×10-4 Ω-cm, respectively, showing no significant difference, whereas the resistivity of the ITZO thin film deposited on the PEN substrate was 7.36×10-4 Ω-cm, which was a rather large value. Regardless of the type of substrate, there was no significant difference in the average transmittance of the ITZO thin film. Figure of Merits of the ITZO thin film deposited on the glass substrate obtained using the average transmittance in the absorption region of the amorphous silicon thin film solar cell and the absorption region of the P3HT : PCBM organic active layer were 10.52 and 9.28×10-3 Ω-1, respectively, which showed the best values. Through XRD and AFM measurements, it was confirmed that all ITZO thin films exhibited an amorphous structure and had no defects such as pinholes or cracks, regardless of the substrate type.

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

A Case Study on the Power Performance Characteristics of Building Integrated PV System with Amorphous Silicon Transparent Solar Cells (비정질 실리콘 투과형 태양전지를 적용한 BIPV 시스템 발전 성능에 관한 사례 연구)

  • Jung, Sun-Mi;Song, Jong-Hwa;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.49-52
    • /
    • 2009
  • Practical building integrated photovoltaic system built by Kolon E&C has been monitored and evaluated with respect to power generation, which was installed in Deokpyeong Eco Service Area in Deokpyeong, Gyeonggi, Korea. The amorphous silicon transparent PV module in this BIPV system has 44Wp in power output per unit module and 10% of transmittance with the unit dimension with $980mm{\times}950mm$. The BIPV system was applied as the skylight in the main entrance of the building. This study provided the database for the practical application of the transparent thin-film PV module for BIPV system through 11 month monitoring as well as various statistical analyses such as monthly power output and insolation. Average monthly power output of the system was 52.9kWh/kWp/month which is a 60% of power output of the previously reported data obtained under $30^{\circ}$of an inclined PV module facing south(azimuth=0). This lower power output can be explained by the installation condition of the building facing east, west and south, which was resulted from the influence of azimuth.

  • PDF

Fabrication of Doping-Free Hydrogenated Amorphous Silicon Thin Film Solar Cell Using Transition Metal Oxide Window Layer and LiF/Al Back Electrode

  • Jeong, Hyeong-Hwan;Kim, Dong-Ho;Gwon, Jeong-Dae;Jeong, Yong-Su;Jeong, Gwon-Beom;Park, Seong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.193-193
    • /
    • 2013
  • 실리콘 박막 태양전지는 광 흡수층에서 형성된 정공과 전자를 효과적으로 분리하기 위해 p형과 n형으로 도핑된 층을 형성하는 p-i-n구조를 갖게 된다. 이러한 도핑 층을 형성하기 위해 B2H6와 PH3와 같은 독성 가스를 사용하기 때문에, 공정 안정성과 환경적인 이슈가 대두된다. 또한 도핑은 추가적으로 실리콘 박막 태양전지의 안정화 효율을 지속적으로 저하시키는 요인이 된다. 이러한 문제점을 개선하기 위하여, 창층으로 MoO3, V2O5, WO3 등과 같이 높은 일함수를 갖는 전이금속 산화물을 사용하고, 광 흡수층으로 i-Si:H을, 후면 전극으로 낮은 일함수를 나타내는 LiF/Al을 사용하였다. 전이금속 산화물과 LiF/Al의 큰 일함수 차이에 의해서 흡수층인 i-Si:H 에서 생성된 캐리어들은 효과적으로 분리되고 수집이 된다. 금속 산화물은 스퍼터링 공정에 의하여 이루어졌으며, 스퍼터링 공정조건에 따라 산화도가 조절되며, 이러한 산화도에 따라 태양전지의 셀 특성이 결정된다. 도핑 층이 없는 새로운 형태의 실리콘 박막 태양전지는 기존 비정질 실리콘 박막 태양전지에 비해 높은 안정화 효율을 나타내며, 이는 도핑 층이 없기 때문에 기존 실리콘 박막 태양전지의 열화현상에 따른 효율저하가 발생하지 않는 장점을 지내고 있다.

  • PDF