• Title/Summary/Keyword: thin film$CuInSe_2$

Search Result 216, Processing Time 0.032 seconds

A Study on properties of $CuInSe_2$ thin films by substrate temperature and annealing temperature (기판온도와 열처리 온도에 따른 $CuInSe_2$ 박막의 특성분석)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.354-355
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from 100[$^{\circ}C$] to 300[$^{\circ}C$] at intervals of 50[$^{\circ}C$].

  • PDF

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

Composition Control of a Light Absorbing Layer of CuInSe2 Thin Film Solar Cells Prepared by Electrodeposition (전착법을 이용한 CuInSe2 박막태양전지 광활성층의 조성 조절)

  • Park, Young-Il;Kim, Donghwan;Seo, Kyungwon;Jeong, Jeung-Hyun;Kim, Honggon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • Thin light-active layers of the $CuInSe_2$ solar cell were prepared on Mo-coated sodalime glass substrates by one-step electrodeposition and post-annealing. The structure, morphology, and composition of $CuInSe_2$ film could be controlled by deposition parameters, such as the composition of metallic precursors, the concentration of complexing agents, and the temperature of post-annealing with elemental selenium. A dense and uniform Cu-poor $CuInSe_2$ film was successfully obtained in a range of parametric variation of electrodeposition with a constant voltage of -0.5 V vs. a Ag/AgCl reference electrode. The post-annealing of the film at high temperature above $500^{\circ}C$ induced crystallization of $CuInSe_2$ with well-developed grains. The KCN-treatment of the annealed $CuInSe_2$ films further induced Cu-poor $CuInSe_2$ films without secondary phases, such as $Cu_2Se$. The structure, morphology, and composition of $CuInSe_2$ films were compared with respect to the conditions of electrodeposition and post-annealing using SEM, XRD, Raman, AES and EDS analysis. And the conditions for preparing device-quality $CuInSe_2$ films by electrodeposition were proposed.

The Properties of $CuInSe_2$ Thin Films by DC/RF Magnetron Sputtering and Thermal Evaporation Method

  • Jeong, Woon-Jo;Ahn, Ho-Geun;Kim, Young-Jun;Yang, Hyeon-Hun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.86-90
    • /
    • 2008
  • $CuInSe_2$ thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and heat treatment conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were deposited in the named order. Among them, Cu and In were deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1:1, while the annealing temperature having an effect on the quality of the thin film was changed from $200^{\circ}C$ to $350^{\circ}C$ at intervals of $50^{\circ}C$.

  • PDF

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

The Effect of Thermal Annealing and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막 성장과 열처리 효과)

  • 윤석진;정태수;이우선;박진성;신동찬;홍광준;이봉주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.871-880
    • /
    • 2003
  • Single crystal CuAlSe$_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410 C with hot wall epitaxy (HWE) system by evaporating CuAlSe$_2$ source at 680 C. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X -ray diffraction (DCXD). The carrier density and mobility of single crystal CuAlSe$_2$ thin films measured with Hall effect by van der Pauw method are 9.24${\times}$10$\^$16/ cm$\^$-3/ and 295 cm$^2$/V $.$ s at 293 K, respectively. The temperature dependence of the energy band gap of the CuAlSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 2.8382 eV - (8.86 ${\times}$ 10$\^$-4/ eV/K)T$^2$/(T + 155K). After the as-grown single crystal CuAlSe$_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal CuAlSe$_2$ thin films has been investigated by PL at 10 K. The native defects of V$\_$cd/, V$\_$se/, Cd$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal CuAlSe$_2$ thin films to an optical n-type. Also, we confirmed that Al in CuAlSe$_2$/GaAs did not form the native defects because Al in single crystal CuAlSe$_2$ thin films existed in the form of stable bonds.

A Study on Cu(In,Ga)Se2 Thin Film with Substrate Temperature Change (기판 온도 변화에 따른 Cu(In,Ga)Se2 박막에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.888-893
    • /
    • 2013
  • In this paper, we prepared $Cu(In,Ga)Se_2$ thin films by using co-evaporation method, and analyzed the properties of the thin films. During the thin film preparation process, we confirmed $InGaSe_2$ phase was formed at $400^{\circ}C$ in first stage, and also confirmed the thin films showed the vacancy decrease. In second and third stage, we confirmed the density increase of crystalline structure at over $480^{\circ}C$ and the formation of $Cu(In_{0.7}Ga_{0.3})Se_2$ phase. As the result of SEM and XRD analysis of the films which were before and after heat-treated, we confirmed the disappearance of $Cu_2Se_2$ and the formation of $Cu(In_{0.7}Ga_{0.3})Se_2$ single phase after the heat-treatment, We, therefore, confirmed the heat-treatment did not affect the absorbency spectra of the thin films.

Properties of CuInSe2 Thin Film with Various Substrate Temperatures (기판온도에 따른 CuInSe2 박막의 특성)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.911-914
    • /
    • 2010
  • In this paper, the $CuInSe_2$ thin film was prepared by using co-evaporation method in four different substrate temperatures $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$. When the substrate temperature was at $200^{\circ}C$ and $300^{\circ}C$, the single-phase $CuInSe_2$ was crystallized. As the temperature increased, it was shown that the thickness of the thin film was decreased with increment of the hall coefficient. When the sample was prepared at $200^{\circ}C$ of the subsrate temperature, the values of band gap energy (Eg), sheet resister and resistivity were measured 0.99 eV, $89.82\;{\Omega}/{\square}$ and $103{\times}10^{-4}\;{\Omega}{\cdot}cm$, respectively.

A study on Cu(In,Ga)Se2 thin film fabarication using to co-evaporation (동시진공증발법을 이용한 Cu(In,Ga)Se2 박막 제작에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2273-2279
    • /
    • 2012
  • This research is based on fabricating Cu(In,Ga)$Se_2$ thin-film by co-evaporation method. On $1^{st}$ - stage, $In_2Se_3$ phase appeared when the substrate temperature reached to $400^{\circ}C$, however, there was small effect between the substrate temperature and absorbency spectrum on $2^{nd}$, $3^{rd}$ - stage because the average thickness of the thin-film was $1{\mu}m$ or higher. SEM and XRD was measured on $2^{nd}$ and $3^{rd}$ stage and it showed as the substrate temperature increases, the density of the crystal structure increased with the decreament of the vacancy. Furthermore, the formation of Cu(In0.7Ga0.3)$Se_2$ phase showed at $480^{\circ}C$ and $500^{\circ}C$.