• Title/Summary/Keyword: thickness sensitivity

Search Result 651, Processing Time 0.021 seconds

BI-AXIAL FRACTURE STRENGTH OF RESIN MODIFIED GLASS IONOMERS (레진강화형 글라스아이오노머의 2 축 굽힘강도)

  • Lee, Yong-Keun;Im, Mi-Kyung;Koo, Dae-Hoi;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.751-760
    • /
    • 1997
  • Resin-modified glass ionomers were introduced in 1988 to overcome the problems of moisture sensitivity and low early mechanical strengths of the conventional glass ionomers, and to maintain their dinical advantages. The purpose of this study was to evaluate the bi-axial fracture strength of four resinmodified glass-ionomers(Fuji II LC, Vitremer, Dyract, VariGlass), one resin composite material(Z-100), and one conventional glass-ionomer(Fuji II). Three specimens of each material and shade combination were made according to the manufacturers' instructions. Materials were condensed into metal mold with a diameter of 10mm and a thickness of 2.0mm and pressed between two glass plates. Resin-modified glass ionomers were polymerized using a Visilux II light curing unit by irradiating for 60 seconds from both sides, and conventional glass ionomer was cured chemically. After specimens were removed from the molds, surfaces were polished sequentially on wet sandpapers up to No. 600 silicone carbide paper. The specimens were thermocycled for 2,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ distilled water. After thermocycling, bi-axial fracture strengths were measured using a compressive-tensile tester(Zwick 1456 Z020, Germany) with the cross head speed of 0.5mm/minute. The results were as follows: 1. Two factors of the kind and color of materials had a main effect on bi-axial fracture strength (p<0.01), and bi-axial fracture strength was influenced significantly by the kinds of materials (p<0.01). But there was no significant interaction between two variables of the kind and color of materials (p>0.05). 2. Comparing the mechanical properties of the materials, the elastic modulus of Z100 was higher than any other material, and there was no difference in the displacement at fracture among materials. The bi-axial fracture strength of Z100 was significantly higher than any other material, and that of resin-modified glass ionomers was significantly higher than that of conventional glass ionomer (p<0.05). 3. In the same material group, the color of material had little influence on the mechanical properties.

  • PDF

Determination of Cr(Ⅵ) by Glassy Carbon and Platinum Electrodes Modified With Polypyrrole Film (폴리피롤 막으로 변성시킨 유리질 탄소 및 백금 전극에서 Cr(Ⅵ) 이온의 정량)

  • Yoo, Kwang Sik;Woo, Sang Beom;Jyoung, Jy Young
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.407-411
    • /
    • 1999
  • Studies have been carried out on the fabrication of PPy/GC and PPy/Pt electrode modified with polypyrrole film and determination of Cr(VI) by using 3-electrode system with modified electrodes. Modified electrodes were able to easily fabricated by cyclic voltammetry scanned from +1.0V to -1.0V(vs. Ag/AgCl) at 50 mV/sec. Film thickness could be controlled at same condition by the number of cycling up to 26 times. Reduction behaviour of Cr(VI) at PPy/GC electrode could be seen at wide potential ranges from +0.6V to -0.5V(vs. Ag/AgCl), and maximum reduction peak potential of the ion was observed at -0.25V(vs.Ag/AgCl). Calibration graph at its potential was linear from 0.1 ppm to 80.O ppm. Slope factor and relative coefficient were 1.75 mA/ppm and 0.998, respectively. Reduction behaviour of Cr(VI) at PPy/Pt electrode was similar to PPy/GC electrode, Calibration graph was linear from l.0 ppm to 60.0 ppm. Slope factor and relative coefficient were 0.5mA/ppm and 0.923, respectively. But PPy/GC modified electrode had about 3 times higher sensitivity than PPy/Pt modified electrode. Reduction behaviour of Cu(II), As(IlI), Pb(II), and Cd(II) couldn't be seen at PPy/GC electrode,Its metals had not lnterfered with Cr (VI) determination.

  • PDF

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.

Hardening State and Basic Properties Changes According to the Mixture Ratio of MMA Resin Used as a Waterproofing Coating Material in Concrete Bridges (콘크리트 교면용 도막방수재로 사용되는 MMA 수지의 배합비율에 따른 경화상태 및 기본 물성에 관한 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.224-234
    • /
    • 2019
  • Waterproof layers are installed in civil engineering structures and bridge construction is commonly finished by applying a layer of regular or asphalt concrete above the waterproof layer. However, asphalt materials are susceptible to melting at high temperature due to its superior temperature sensitivity, and this causes the waterproofing material to melt due to the high temperature of the asphalt concrete, thereby increasing the defect occurrence rate due to the thickness reduction. In this study, tensile strength and elongation of hard and soft type of MMA(Methyl Methacrylate) applied to bridges were compared in accordance to standard performance criteria based on different mixture ratios. Results of comparative testing showed that hard MMA resin can display a satisfactory tensile strength, and soft MMA resin displays satisfactory elongation properties, but as the two resin types are separately used, neither types are able to satisfy the standard requirements outlined in KS F 4932. When the amount of the powder exceeds 56.25% of the total amount, voids are generated on the surface after curing and self leveling was impossible and a heterogeneous surface is formed. Furthermore, when the hard resin: soft resin: powder mixture ratio was set to 15g: 85g: 150g. the tensile strength was $1.5N/mm^2$ and the elongation percentage was 133% which satisfy the tensile performance of KS F 4932.

Comparison of Sizes of Anatomical Structures according to Scan Position Changes in Patients with Interstitial Lung Disease Using High-Resolution Thoracic CT (고해상도 흉부 전산화단층촬영을 이용한 간질성 폐질환을 가진 환자의 자세에 따른 해부학적 구조물 크기 비교)

  • Lee, Jae-min;Park, Je-heon;Kim, Ju-seong;Lim, Cheong-Hwan;Lee, Ki-Baek
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • High-Resolution thoracic CT (HRCT) is a scanning protocol in which thin slice thickness and sharpness algorithm are utilized to enhance image resolution for diagnosis and assessment of interstitial lung disease (ILD). This examination is sometimes performed in both supine and prone position to improve sensitivity to early changes of these conditions. Anatomical structures (the size of lung field and heart and descending aorta) of 150 patients who underwent HRCT were retrospectively compared. HRCT had been conducted in two positions (supine and prone). Data were divided into five groups according to patient body weights (from 40 to more than 80kg, 10kg intervals, 60 patients/each group). Quantitative analysis was utilized in Image J program. In the supine position defined as the control group, the average values of lung fields and heart size and aorta were compared with the prone position defined as the experimental group. The size of the lungs was found to be higher in the supine position, and it was confirmed that there was a statistically significant difference in patients over 70 kg (p<0.05). In addition, both sizes of the heart and descending aorta were larger in prone position, but in the case of the heart, there was no correlation with the presence or absence of ILD disease (p>0.05). Also, the area of prone in the descending aorta was higher than supine position, but there was no statistically significant difference between supine and prone position (p>0.05). In conclusion, when the severity of ILD disease was severe, there was no statistically significant difference in the area difference between supine and prone position, so it is considered that it will be helpful in diagnostic decision.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

High-Frequency Bottom Loss Measured at Near-Normal Incidence Grazing Angle in Jinhae Bay (진해만에서 측정된 높은 수평입사각에서의 고주파 해저면 반사손실)

  • La, Hyoung-Sul;Park, Chi-Hyung;Cho, Sung-Ho;Choi, Jee-Woong;Na, Jung-Yul;Yoon, Kwan-Seob;Park, Kyung-ju;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.223-228
    • /
    • 2010
  • High-frequency bottom loss measurements for grazing angle of $82^{\circ}$ in frequency range 17-40 kHz were made in Jinhae bay in the southern part of Korea. Observations of bottom loss showed the strong variation as a function of frequency, which were compared to the predicted values using two-layered sediment reflection model. The geoacoustic parameters including sound speed, density and attenuation coefficient for the second sediment layer were predicted from the empirical relations with the mean grain size obtained from sediment core analysis. The geoacoustic parameters for the surficial sediment layer were inverted using Monte Carlo inversion algorithm. A sensitivity study for the geoacoustic parameters showed that the thickness of surficial sediment layer was most sensitive to the variation of the bottom loss.