• Title/Summary/Keyword: thickness evaluation

Search Result 1,809, Processing Time 0.033 seconds

An Evaluation of the Hamrock and Dowson's EHL Film Thickness Formulas (Hamrock과 Dowson의 EHL 유막두께식에 대한 평가)

  • 박태조
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 1996
  • In this paper, a finite difference method and the Newton-Raphson method are used to evaluate the Hamrock and Dowson's EHL film thickness formulas in elliptical contact problems. The minimum and central film thicknesses are compared with the Hamrock and Dowson's numerical results for various dimensionless parameters and with their film thickness formulas. The results of present analysis are more accurate and physically reasonable. The minimum film thickness formula is similar with the Hamrock and Dowson's results, however, the central film thickness formula shows large differences. Therefore, the Hamrock and Dowson's central film thickness formula should be replaced by following equation. $H_{c} = 4.88U^{0.68}G^{0.44}W^{0.096}(1-0.58e^{-0.60k})$ More accurate film thickness formula for general elliptical contact problems can be expected using present numerical methods and further research should be required.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Analysis of Underground RC Structures considering Elastoplastic Interface Element (탄소성 경계면 요소를 고려한 철근콘크리트 지하 구조물의 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.471-476
    • /
    • 2001
  • Even though structural performance evaluation techniques for reinforced concrete structures have been improved, there are still many problems in the evaluation of structural performance for underground structures which interacts with surrounding soils. Since experimental evaluation of underground RC structures considering the interaction with the surrounding soil medium is quite difficult to be simulated, the evaluation for underground RC structures using an analytical method can be applied very usefully, For underground structures interacted with surrounding soils, it is important to consider path-dependent RC constitutive model, soil constitutive model, and interface model between structure and soil, simultaneously. In this paper, an elastoplastic interface model which consider thickness was proposed and importance of interface model is discussed. The effects of stiffness of structures to entire underground RC system are investigated through numerical experiment for underground RC structure for different reinforcement ratios and thickness of interfaces.

  • PDF

A Study of the Thickness Effect using Structural Stress Approach for Fillet Welded Joints (구조 응력 기법을 적용한 필릿 용접부 두께 지수 산정에 관한 연구)

  • Xin, Wen-Jie;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • In this study, non-load-carrying fillet welded joints fabricated using EH grade-steel are evaluated with the structural stress approach. The thickness effect was investigated by a study on welded steel joints with thickness ranging from 25 to 80mm. As-welded joint for main plate thickness of 25 to 80mm, the fatigue strength is reduced gradually. On the other hand, in case of main plate thickness of 25 to 80mm, the structural stress concentration factor increases gradually. As a result, for structural stress approach, thickness effect is not required for correction. Based on these results, a new evaluation fillet welded joint for fatigue design purposes has been proposed FAT 125.

Voxel-Based Thickness Analysis of Intricate Objects

  • Subburaj, K.;Patil, Sandeep;Ravi, B.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2006
  • Thickness is a commonly used parameter in product design and manufacture. Its intuitive definition as the smallest dimension of a cross-section or the minimum distance between two opposite surfaces is ambiguous for intricate solids, and there is very little reported work in automatic computation of thickness. We present three generic definitions of thickness: interior thickness of points inside an object, exterior thickness for points on the object surface, and radiographic thickness along a view direction. Methods for computing and displaying the respective thickness values are also presented. The internal thickness distribution is obtained by peeling or successive skin removal, eventually revealing the object skeleton (similar to medial axis transformation). Another method involves radiographic scanning along a viewing direction, with minimum, maximum and total thickness options, displayed on the surface of the object. The algorithms have been implemented using an efficient voxel based representation that can handle up to one billion voxels (1000 per axis), coupled with a near-real time display scheme that uses a look-up table based on voxel neighborhood configurations. Three different types of intricate objects: industrial (press cylinder casting), sculpture (Ganesha idol), and medical (pelvic bone) were used for successfully testing the algorithms. The results are found to be useful for early evaluation of manufacturability and other lifecycle considerations.

Strength Evaluation of Adhesive Bonded Joint for Car Body (차체접합과 관련한 접합 강도 평가)

  • 이강용;김종성;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.143-150
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for electrical vehicle body has been performed through single lap joint tests with the design parameters such as joint style, adherend, bonding overlap length and bonding thickness. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the stress ratio zero value. It is experimentally observed that fatigue strength of joint increases for the increase of overlap length. The combinations of Al-Al and Al-FRP adherends show that fatigue strength of joint is hardly changed for the increase of bonding thickness, but FRP-FRP adherend specimen shows that fatigue strength of joint increases after decreases for the increase of bonding thickness. Al-Al adherend specimen has much higher fatigue length than Al-FRP and FRP-FRP adherend specimens. Riveting at adgesive bonded joint gives little effect on fatigue strength.

Reduction of Insulation thickness for EHV XLPE power cable (초고압 XLPE 전력케이블 절연두께 저감화)

  • Lee, Ki-Soo;Choi, Woong;Choi, Young-Hun;Choi, Bong-Nam;Kim, Do-Young;Yun, Duck-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2271-2273
    • /
    • 1999
  • The manufacturing technology of XLPE power cable ( e.g. gas curing, triple common extrusion, clean room, super-clean compound, etc.) had been developed in 1960's and the design parameter of insulation thickness for EHV XLPE power cable at present was determined in 1960's. But, the quality of XLPE power cable has been improved up to now. The re-evaluation of design parameter for insulation thickness reductions is required and so we performed weibull plotting test using model cable. This paper describes the evaluation details of the insulation characteristics according to weibull plotting test.

  • PDF

A study on characteristics of Mash Seam TB weld in ultra-low carbon steel applied on automotive body (자동차용 극저탄소 냉연강판의 Mash Sem TB를 이용한 용접시 특성에 관한 연구)

  • Han, Chang-Woo;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.189-191
    • /
    • 2001
  • This study introduces the new way for the evaluation criteria of the Mash-Seam Tailored Blank weldability, The materials used are low carbon automotive galvanized and high strength steels and the evaluation of weldability are examined with various thickness. Welding tests were conducted for both similar thickness and dissimilar thickness cases. The criteria developed for optimum welding conditions were based on the relationship among results of die press forming test, weld transverse tensile test, Erichsen test and microhardness measurements. The application of the developed criteria(fracture ratio, strength ratio, etc) in obtaining optimum welding condition revealed that a weld which satisfied ant of the criteria did not fracture during actual die press test.

  • PDF

A Study on Fire Resistance Performance Evaluation for Field Application of Ultra-High Strength Concrete (초고강도 내화 콘크리트의 현장 적용을 위한 내화성능 평가에 관한 연구)

  • Baek, Young-Woon;Yuk, Tae-Won;Park, Dong-Soo;Kim, Han-Sol;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.41-42
    • /
    • 2023
  • The physical performance of high-strength concrete deteriorates when exposed to high temperatures such as fire. In particular, in the case of ultra-high-strength concrete, there is a high possibility of explosion due to internal water pressure and thermal expansion due to the tight internal structure. In this paper, a fire resistance certification test was conducted for field application of ultra-high-strength fire-resistant concrete, and the fire resistance performance (temperature rise of main rebar) was compared according to the structural concrete cover thickness. As a result, when the covering thickness was 40 mm, three structures did not meet the certification standards, and when the covering thickness was 50 mm, all structures met the fire resistance certification standards.

  • PDF

Accuracy Enhancement of Reflection Signals in Impact Echo Test

  • Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.924-929
    • /
    • 2003
  • A majority of infrastructures has been deteriorated over time. Therefore, it is very important to verify the quality of construction, and the level of structural deterioration in existing structures, to ensure their safety and functionality. Many researchers have studied non-destructive testing (NDT) methods to identify structural problems in existing structures. The impact echo technique is one of the widely used NDT techniques. The impact echo technique has several inherent problems, including the difficulties in P-wave velocity evaluation due to inhomogeneous concrete properties, deterioration of evaluation accuracy where multiple reflection boundaries exist, and the influence of the receiver location in evaluating the thickness of the tested structures. Therefore, the objective of this paper is to propose an enhanced impact echo technique that can reduce the aforementioned problems and develop a Virtual Instrument for the application via a thickness evaluation technique which has same technical background to find deterioration in concrete structures. In the proposed impact echo technique, transfer function from dual channel system analysis is used, and coherence is improved to achieve reliable data. Also an averaged signal -ensemble- is used to achieve more reliable results. From the analysis of transfer function, the thickness is effectively identified.