• 제목/요약/키워드: thermosyphon

검색결과 117건 처리시간 0.03초

낮은 핀을 가진 경사 써모사이폰의 열전달 성능에 관한 실험적 연구 (Experimental study on heat transfer inside inclined thermosyphon with low integral-fins)

  • 조동현;권혁홍
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.165-172
    • /
    • 1998
  • An experimental study on the heat transfer of the inclined thermosyphon with low integral-fins in which boiling and condensation occurred is performed to investigate its heat transfer performance. Water and CFC-30 have been used as the working fluids. The operating temperature and the inclination angle of thermosyphon have been used as the experimental parameters. The heat flux input and the inclination angle $\theta$ towards the vertical position were varied in steps. The heat transfer rate in the thermosyphon was depended upon the inclination angle. In addition, it is to obtain the overall heat transfer coefficients and the characteristics as a operating temperature for the practical applications.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

상변화 물질로부터의 열에너지 추출에 관한 연구 - 핀이 부착된 열싸이폰 이용에 관하여 - (Thermal Energy Extraction from Phase Change Material - by Means of Finned Thermosyphon -)

  • 목재균;유재석;김기현
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.5-12
    • /
    • 1988
  • One of the effective means to transfer the heat into and from the energy storage medium is thermosyphon. In this study, a two-phase closed thermosyphon with circular fins was used to extract the thermal energy stored in paraffin wax (Sunoco p-116). Heat transfer characteristics along the heat flow path were investigated as well as the overall performance. Some of the important results are as follows: (1) The temperature distribution of the wax in the radial direction was always maintained fairly uniformly; (2) Compared with bare thermosyphon, the heat transfer rate was vastly improved in the early stage of the experiment; and (3) Heat transfer coefficient between the wax and evaporating section of thermosyphon remained nearly constant during the experiment.

  • PDF

낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle)

  • 김철주;강환국;김윤철
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

열사이펀의 열성능 산정을 위한 수치해석 연구 (Evaluation on Thermal Performance of Thermosyphon by Numerical Analysis)

  • 장창규;최창호;이장근;이철호
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.57-66
    • /
    • 2014
  • 동토지역에서는 계절변화에 상관없이 항시 영하상태로 동결되어 있는 영구동토층과, 그 위로 동결융해가 반복되는 활동층으로 구성되어있다. 일반적으로 대기온도 변화에 따라 동결융해가 반복되는 활동층은 얼음과 물의 상변화 작용이 반복되기 때문에 지반의 융기현상과 침하현상, 그리고 영구동토층의 온도상승을 초래할 수 있다. 열사이펀이란 구조체 내부에 충전된 냉매의 자가적인 열순환을 이용하여 지반의 온도를 영하상태로 제어하는 지반 안정화 공법 중 하나이다. 열사이펀은 대기중에 냉매의 열을 방출하는 응축부와 지중에 열을 흡수하는 증발부로 구성되어 있으며 대기의 온도가 영하의 상태일 때 지반의 온도를 영하상태로 제어한다. 본 연구에서는 열사이펀의 지반 열전달성능을 분석하기 위해 모형지반에 단열재를 배치하여 열사이펀을 통한 지반동결실험을 수행하였다. 단열재의 열차단성 및 열사이펀 길이를 고려하여 단열재 및 열사이펀의 성능실험을 수행하였으며, 실험에서 얻어진 물성치를 상용수치해석 프로그램인 TEMP/W에 반영하였다. 본 연구에서 제시된 실내실험과 수치해석 방법을 통해 열사이펀의 열성능을 산정할 수 있었다.

Investigation of Boiling Heat Transfer Characteristics of Two-Phase Closed Thermosyphons with Various Internal Grooves

  • Han, Ku-Il;Cho, Dong-Hyun;Park, Jong-Un
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1739-1745
    • /
    • 2003
  • The boiling heat transfer characteristics of two-phase closed thermosyphons with internal grooves are studied experimentally and a simple mathematical model is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of a two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tube is also tested for comparison. Methanol is used as working fluid. The effects of the number of grooves, the operating temperature, the heat flux are investigated experimentally. From these experimental results, a simple mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphon. And also the effects of the number of grooves, the operating temperature, the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical model is obtained. The experimental results show that the number of grooves and the amount of the working fluid are very important factors for the operation of thermosyphons. The two-phase closed thermosyphon with copper tubes having 60 internal grooves shows the best boiling heat transfer performance.

열사이펀의 형상비와 충전율에 따른 열전달 성능 해석 (ANALYSIS OF HEAT TRANSFER PERFORMANCE WITH ASPECT AND FILLING RATIOS IN THERMOSYPHON)

  • 김영철;최종욱;김성초
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.92-98
    • /
    • 2015
  • Thermal-fluid analysis is performed numerically to figure out the characteristics of heat transfer in a thermosyphon varying with the aspect ratio of geometry and the filling ratio of working fluid. The computational results are reasonable compared with the experimental data and visualized. The thermal resistance and the convective heat transfer coefficients are evaluated with the aspect ratio of thermosyphon and the filling ratio of working fluid, respectively. In conclusion, the thermal resistance decreases as the length of evaporator increases. However, the variation of a condenser length is nearly independent on the thermal resistance. In order to raise the performance of thermosyphon, the working fluid needs to be filled over 75%. In addition, Nusselt numbers in the evaporator and the condenser show 275 and 304, respectively.

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • 수산해양기술연구
    • /
    • 제52권3호
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

전력변환 반도체 냉각용 PFC(FC-72) 밀폐형 2상 열사이폰의 열전달 한계에 관한 연구 (A Study on the Heat Transport Limitations of a PFC(FC-72) Two-Phase Closed Thermosyphon for Cooling Power Semiconductors)

  • 박용주;홍성은;김철주
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.725-733
    • /
    • 2002
  • In this study, the heat transport limitations of a two-phase closed thermosyphon were investigated. For the test, a two-phase closed thermosyphon ($L_t/: 600 mm,\;L_e:105mm,\;L_a:75mm,\;L_c:420mm,\;D_o:22.2mm,$ container: copper (inner grooved surface), working fluid: PFC ($C_6F_14$) was fabricated with a reservoir that can change the fill charge ratio. The following was imposed as the factors on the heat transport limitations of a two-phase closed thermosyphon. 1) Fill charge ratio of the working fluid. 2) Tilt angle of the longitudinal axis. From tile experimental data, some results were obtained as follows. When the fill charge ratio was relatively small ($\psi$20%), the heat transport limitation occurred about 100W by dry-out limitation. However over 40%, it shelved nearly constant value (500 W) by flooding limitation. The heat transport limitation according to the tilt angle increased smoothly until the tilt angle was $60^{\circ}$,/TEX>, after then decreased slowly.

Effects of Working Fluid Filling Ration and Heat Flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon

  • Chang, Ki-Chang;Lee, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.153-161
    • /
    • 2002
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying the loop thermosyphon to heat exchanger de-sign. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in the range of 13000~78000 W/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\pm$5% and $\pm$20% respectively.