• Title/Summary/Keyword: thermostable

Search Result 319, Processing Time 0.024 seconds

Thermostable ${\beta}$-Glycosidase-CBD Fusion Protein for Biochemical Analysis of Cotton Scouring Efficiency

  • Ha, Jae-Seok;Lee, Young-Mi;Choi, Su-Lim;Song, Jae-Jun;Shin, Chul-Soo;Kim, Ju-Hea;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.443-448
    • /
    • 2008
  • Multidomain proteins for the biochemical analysis of the scouring efficiency of cotton fabrics were constructed by the fusion of a reporter moiety in the N-terminal and the cellulose binding domain (CBD) in the C-terminal. Based on the specific binding of the CBD of Cellulomonas fimi exoglucanase (Cex) to crystalline cellulose (Avicel), the reporter protein is guided to the cellulose fibers that are increasingly exposed as the scouring process proceeds. Among the tested reporter proteins, a thermostable ${\beta}$-glycosidase (BglA) from Thermus caldophilus was found to be most appropriate, showing a higher applicability and stability than GFP, DsRed2, or a tetrameric ${\beta}$-glycosidase (GUS) from Escherichia coli, which were precipitated more seriously during the expression and purification steps. When cotton fabrics with different scouring levels were treated with the BglA-CBD and incubated with X-Gal as the chromogenic substrate, an indigo color became visible within 2 h, and the color depth changed according to the conditions and extent of the scouring.

Ketoprofen ethyl ester에 대해 높은 광학 선택성을 갖는 (R)- 과 (S)-stereospecfic esterase들의 클로닝과 서열분석 및 발현

  • Kim, Ji-Yeon;Choe, Gi-Seop;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.625-628
    • /
    • 2001
  • To isolate novel strains that hydrolyzed the rac-ketoprofen ethyl ester to ketoprofen in the stereospecific manner, we screened broad ecological niches and soil samples in which the activity was expected to be found. From thousands of strains, we isolated a Pseudomonas sp. S34 producing a (S)-stereospecific esterase, and a thermostable esterase with (R)-form selectivity was also 。 btained from Bacillus stearothermophilus JYl44. To further analyse the gene structure and to induce a high level expression, two genes from each strain were cloned and sequenced. BLAST search results with the esterase gene from 534 revealed that both of gene (80-84 %) and amino acid sequences (89- 95 %) were highly conserved in the related esterases from Pseudomonas strains (fluorescens and aeruginosa). The thermostable esterase from JY144, however, revealed a relative low homology (45-52 %) to other esterase and/or lipase from related strains. Obviously, a complete conversion with pure enantiomer (R - or S) were readily achieved by recombinant clones expressing either (R)- or (S)- stereospecific esterase.

  • PDF

Purification and Properties of Thermostable L-Lactate Dehydrogenase Produced by Escherichia Coli (대장균으로 부터 생산된 L-lactate Dehydrogenase의 정제 및 특성)

  • Song, Jae-Young;Kim, Kyoug-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.964-972
    • /
    • 1994
  • The 4.3-kb gene coding for L-lactate dehydrogenase of Bacillus stearothermophilus has been subcloned and expressed in E. coli cells. The enzyme was purified 200-fold with 25% yield by heat treatment , DEAE-Sephadex, and NAD++ -Sepharose CL-4B affinity chromatography followed by gel filtration through Sephadex G-200 . The molecular weight of the purfied enzyme was estimated to be about 35, 000 and 140, 000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively. indicating that the enzyme is composed of four identical subunits. THe enzyme for pyruvate reduction and lactate oxdiation was stable at 60 and 75$^{\circ}C$ for 30 min, and the optimal temperatures for both reactions were 60 and 7$0^{\circ}C$, respectively. The enzyme had an optimal pH at 5.5 and 8.5 in pyruvate reduction and lactate oxidation, respectively. The pH stability of enzyme of pyruvate reduction was table between pH 5 and 7. more than 90% of enzyme activity was lost at 1mM FeSO4 and p-chloromercuribonzoate. The maximal activation of the enzyme was obtained with 0.8mM fructose 1, 6-bisphosphate.

  • PDF

Practice of industrial strain improvement (제 1차 한.중 생명공학 심포지움)

  • Lei, Zhao-zu
    • The Microorganisms and Industry
    • /
    • v.19 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • Industrial strain improvement is concerned with developing or modifying microorganisms used in production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific characteristics such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empirical approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids, organic acids and enzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is a homoserine auxotroph with AEC, TA double metabolic analogue resistant markers. The yield reaches 100 g/l. Besides, the citric acid-producing organism Aspergillus niger, Co827, its productivity reaches the advanced level in the world, is also the result of a series mutations especially with $^60Co{\gamma}$-radiation. The thermostable .alpha.-amylase producing strain A 4041 is the third example. By combining physical and chemical mutations, the strain A 4041 becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The .alpha.-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus niger SP56, its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV-11. Recently, recombinant DNA approach provides a worthwhile alternative strategy to industrial strain improvement. This technique had been used by us to increase the thermostable .alpha.-amylase production and on some genetic researches.

  • PDF

Studies on Thermostable Tryptophanase from a Symbiotic Thermophile

  • Chung, Yong-Joon;Beppu, Teruhiko
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.515.1-515
    • /
    • 1986
  • Thermostable tryptophanase was extracted from a thermophilie bacterium, strain T which was absolutely symbiotic with strain 5. The enzyme was purified 14.7 fold with 5.8% yield by chromatographies using ion exchange, gel filtration, and hydrophobic interaction columns, followed by high performance liquid chromatography on hydroxyapatite column. The purified enzyme has a molecular weight of approximately 210,000 estimated by gel filtration column chromatography, and the molecular weight of subunit was determined by SDS polyacrylamide gel electrophoresis to be 46,000, which indicates that the native enzyme is made of four homologous subunits. The tryptophanase was stable at 65o0 and the optimum temperature for the enzyme activity for 20 min reaction was 70$^{\circ}C$. The purified enzyme activity for 20 min ieaction was 70$^{\circ}C$. The purified enzyme catalyzed the degradation of L-tryptophan into indole, pyruvate and ammonia in the presence of pyridoxal phosphate. 5-Hydroxy-Ltryptophan, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-L-cysteine, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-Lcysteine, and L-serine were also used as substrates to form pyruvate. The amino acid composition of the tryptophanase was determined, and found to contain a high percentage of hydrophobic amino acids, especially in the proline content, which was much higher than that of Escherichia coli tryptophanase. In addition, the 35N-terminal amino acid sequence of the tryptophanase was completely different from that of E. coli tryptophanase.

  • PDF

Purification and Characterization of Endo-$\beta$-1,4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry

  • Naganagouda, K.;Salimath, P.V.;Mulimani, V.H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1184-1190
    • /
    • 2009
  • A thermostable extracellular $\beta$-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The $\beta$-mannanase exhibited optimum catalytic activity at pH 5.5 and $55^{\circ}C$. It was thermostable at $55^{\circ}C$, and retained 50% activity after 6 h at $55^{\circ}C$. The enzyme was stable at a pH range of 3.0 to 7.0. The metal ions $Hg^{2+}$, $Cu^{2+}$, and $Ag^{2+}$ inhibited complete enzyme activity. The inhibitors tested, EDTA, PMSF, and 1,10-phenanthroline, did not inhibit the enzyme activity. N-Bromosuccinimide completely inhibited enzyme activity. The relative substrate specificity of enzyme towards the various mannans is in the order of locust bean gum>guar gum>copra mannan, with $K_m$ of 0.11, 0.28, and 0.33 mg/ml, respectively. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food-processing industry.

Purification and Characterization of a Thermostable ${\beta}-1$,3-1,4-Glucanase from Laetiporus sulphureus var. miniatus

  • Hong, Mi-Ri;Kim, Yeong-Su;Joo, Ah-Reum;Lee, Jung-Kul;Kim, Yeong-Suk;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.818-822
    • /
    • 2009
  • A ${\beta}-1$,3-1,4-glucanase from the fungus Laetiporus sulphureus var. miniatus was purified as a single 26 kDa band by ammonium sulfate precipitation, HiTrap Q HP, and UNO Q ion-exchange chromatography, with a specific activity of 29 U/mg. The molecular mass of the native enzyme was 52 kDa as a dimer by gel filtration. ${\beta}-1$,3-1,4-Glucanase showed optimum activity at pH 4.0 and $75^{\circ}C$. The half-lives of the enzyme at $70^{\circ}C$ and $75^{\circ}C$ were 152 h and 22 h, respectively. The enzyme showed the highest activity for barley ${\beta}$-glucan as ${\beta}-1$,3-1,4-glucan among the tested polysaccharides and p-nitrophenyl-${\beta}$-D-glycosides with a $K_m$, of 0.67 mg/ml, a $k_{cat}$ of 13.5 $S^{-1}$ and a $k_{cat}/K_m$ of 20 mg/ml/s.