• Title/Summary/Keyword: thermoplastic vulcanizates

Search Result 11, Processing Time 0.018 seconds

Dynamically Vulcanized PP/EPDM Blends:Effects of Different Types of Peroxides on the Properties

  • Naskar, K.;Noordermeer, J.W.M.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.167-174
    • /
    • 2003
  • Thermoplastic vulcanizates (TPV) or dynamic vulcanizates are thermoplastic elastomers produced by simultaneous mixing and crosslinking of a rubber and a thermoplastic. The objective of the present work is to investigate the effects of different types of peroxides as curing agents on the properties of PP/EPDM TPVs. The mechanical properties change significantly with the chemical nature of the peroxides and the extent of crosslinking at a fixed PP/EPDM blend ratio. The tensile strength of the TPVs obtained with the various peroxides can be related to the solubility parameters of the polymers and of the peroxides. The Young's modulus of the peroxide-cured TPVs can be correlated with the delta torque values of equivalent thermoset EPDM vulcanizates, corresponding to the crosslinking efficiencies of the peroxides.

Revisit of Thermoplastic EPDM/PP Dynamic Vulcanizates

  • Lim, Jaehwa;Park, Jun Il;Park, Joon Chul;Jo, Mi Young;Bae, Jae Yeong;Choi, Seok Jin;Kim, Il
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • A comprehensive survey of the available literature showed that in the last few decades, there has been a growing interest in the use of thermoplastic vulcanizates (TPVs). TPVs are the second largest group of soft thermoplastic elastomers (TPEs) after styrene-based block copolymers, and offer a wide range of potential and proven applications, including in mechanical rubber goods, under-the-hood applications in the automotive field, industrial hose applications, electrical applications, consumer goods, and soft touch applications. Over the last two decades, TPVs have shown a strong and steady market growth (~12% per year). Commercialized TPVs are commonly based on blends of ethylene propylene diene monomer (EPDM) rubber and polypropylene (PP), and to a lesser extent on combinations of butyl or nitrile rubber with PP. EPDM/PP TPVs are characterized by finely dispersed crosslinked EPDM rubber particles (particles size varying between 0.5 and $2.0{\mu}m$) distributed in a continuous thermoplastic PP matrix. If the rubber particles of such a blend are small enough and if they are vulcanized well enough, then the properties of the blend are generally improved. This review article introduces various topics and aspects relevant to EPDM/PP TPVs. The development of TPVs, the use of various types of crosslinking systems and co-agents as crosslinking agents for PP/EPDM blends, the morphology and rheology of TPVs, and their typical end-use applications are also reviewed.

Morphology of EPDM-based Thermoplastic Vulcanizates (EPDM계 열가소성 가황체의 형태학적 연구)

  • Lee, Sang-Jin;Kim, Young-Kyoo;Park, Seong-Soo;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 1997
  • The morphology of the thermoplastic vulcanizates prepared from ethylene-propylene-diene terpolymer, polypropylene and high density polyethylene(HDPE) or ethylene based ionomer were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE or ionomer under shear with dicumyl peroxide(DCP). The effects of DCP concentration and rubber/plastics composition were studied. In the morphological analysis by scanning electron microscopy (SEM), a small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic vulcanization process could reduce the domain size of the crosslinked EPDM phase. When ionomer was added to EPDM/PP blend, the thermoplastic vulcanizate showed typical ductile fracture topology and the trend was more clearly observed when DCP contents and ionomer contents are higher.

  • PDF

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.

Mechanical Properties of Elastomer TPVs due to Injection Molding Conditions (엘라스토머 TPV의 사출성형조건에 따른 기계적 물성)

  • Han, Seong-Ryeol;Jeong, Yeong-Deug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • Thermoplastic elastomer(TPE) has many advantages such as high flexibility, high elasticity and high elongation, etc. TPE is easily molded as plastic materials, therefore, many TPE parts are applied as home appliances and mechanical parts. However, its mechanical properties would be changed by injection molding conditions such as melt temperature, mold temperature, injection pressure and holding pressure, etc. In this study, the influences of the injection molding condition on the mechanical properties as tensile strength, hardness of thermoplastic vulcanizates(TPVs), which is one of the TPE, were investigated. By the injection molding experiment, the molding's tensile strength and hardness was influenced on the melt temperature and composition ratio of PP and EPDM. The morphology of moldings were shown by the scanning electron microscope.

  • PDF

Behavior of elastomer TPVs' Mechanical Properties According to Injection Molding Conditions (엘라스토머 TPV의 사출성형조건에 따른 기계적 물성)

  • Han S. R.;Kim J. H.;Jeon S. G.;Lee G. H.;Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.265-268
    • /
    • 2005
  • Thermoplastic elastormer (TPE) has many advantages such as high flexibility, high elasticity and high elongation, etc. TPE is easily molded such as plastic materials, therefore, many TPE parts are applied as home appliances and mechanical parts. However, if TPE is once molded, its mechanical properties are changed by injection molding conditions such as melt temperature, mold temperature, injection pressure and holding pressure, etc. In this study, the influences of the injection molding condition on the mechanical properties of thermoplastic vulcanizates(TPVs), which is one of the TPE, were investigated. By the injection molding experiment, as increasing the melt temperature, the tensile strength, shrinkage and hardness decreased. By the scanning electron microscope (SEM) analyzing the TPVs' crystallization, the morphology was affected by the melt temperature.

  • PDF

Fracture Toughness of the Thermoplastic Vulcanizates from EPDM/PP/Ionomer Ternary Blends (EPDM/PP/Ionomer 삼원 블렌드로 된 열가소성 가황체의 파괴 인성)

  • Kim, K.;Cho, W.J.;Ha, C.S.;Go, J.H.
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.341-346
    • /
    • 1996
  • The fracture mechanics investigation of the thermoplastic vulcanizates(TPV) from EPDM and PP/Ionomer ternary blends was performed in terms of the J-integral by measuring fracture energy via the locus method. The TPV from ternary blends consisting of EPDM, PP and ionomer were prepared in a laboratory integral mixer by blending and vulcanizing simultaneously. Vulcanization was performed with dicumyl peroxide (DCP) and the composition of EPDM and PP was fixed at 50/50 by weight. Two kinds of poly(ethylene-co-methacrylic acid) (EMA) lonomers were used. The J-integral values at crack initiation, Jc, of the dynamically vulcanized EPDM and PP/EMA Ionomer ternary blends were affected by the cation types $(Na^+\;or\;Zn^{2+})$ and contents(5-20wt%) of the added EMA Ionomers. The ternary blend containing 20wt% zinc-neutralized EMA Ionomer and 1.0phr DCP showed the highest Jc values of the blends.

  • PDF

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Rubber bound phenolic antioxidant and its application in thermoplastic elastomer

  • Klinpituksa, Pairote;Kiarttisarekul, Anyarat;Kaesaman, Azizon
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.175-183
    • /
    • 2014
  • Natural rubber bound phenolic antioxidant, 2,6-di-tert-butyl-4-vinylphenol (2,6-DBVP), was prepared from natural rubber and 2,6-DBVP in both solution and melt state. The 2,6-DBVP had been synthesized from 3,5-di-tert-butyl-4-hydroxybenzaldehyde and methyltriphenylphosphonium iodide ($MePPh_3I$) by Wittig reaction ($0^{\circ}C$ for 2 hrs, $N_2$ atmosphere). The conditions for preparation of natural rubber bound 2,6-DBVP (NR-DBVP) were optimized for both solution state (1 phr BPO and 8 phr 2,6-DBVP at $70^{\circ}C$ for 2 hrs) and for melt state (1 phr BPO and 8 phr 2,6-DBVP at $70^{\circ}C$ for 10 mins, with rotor speed of 60 rpm). A thermoplastic vulcanizate was obtained using a compatibilizer, polypropylene modified with phenolic resin (PhHRJ-PP), in a closed mixer ($180^{\circ}C$ for 3 mins, rotor speed 60 rpm). The antioxidant properties of vulcanized NR-DBVP, using phenolic as the vulcanization system, were similar to NR with the conventional antioxidant BHT. In addition, the antioxidant, water leaching property of the thermoplastic vulcanizate of NR-DBVP/PP were good in comparison to a NR blend with BHT; the morphologies of these thermoplastic vulcanizates were similar.

Characteristics of Thermoplastic Vulcanizate Weatherstrip Prepared by Water-Foaming Technique (수발포 기술을 적용한 열가소성 고무 Weatherstrip 특성)

  • 이성훈;김진국
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.436-442
    • /
    • 2003
  • Thermosetting elastomer such as EPDM (Ethylene Propylene Dien Rubber) has been applied to the sponge weatherstrip of a vehicle as a main material. However, the thermosetting elastomers have limited recycling and have brought about the environmental problems. Furthermore, many steps of the manufacturing process such as formulation, mastication and vulcanization make difficult to control uniformity of the endproducts. These problems of current EPDM weatherstrip necessitated development of a new recyclable material, Thermoplastic Vulcanizates (TPV). In this study the influence of the water contents, and the processing conditions. On the foam density and structure in water blowing process was carried out. We found that TPV also can be foamed with water, maintaining the uniformity form this study. Therefore, many inevitable problems of EPDM weatherstrip can be solved, and this new technique is expected to take a roll of making a breakthrough in the rubber industry.