• Title/Summary/Keyword: thermoplastic urethane(TPU)

Search Result 4, Processing Time 0.016 seconds

Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation (TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석)

  • Jung, Hee Suk;Oh, Doo Young;Ko, Dong Shin;Song, Hyoung Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Polypropylene is the main existing material in the domestic market being used for the filter plate because of its moldability, low cost, and commercial availability. Polypropylene filter plate once distorted due to the high-pressure during operation may cause the problem in the continuous operation of the solid-liquid separation module. Thermoplastic Poly Urethane (TPU) can be a high-performance alternative material for the filter plate in the solid-liquid separation module of the dehydration process. Hence, to predict and evaluate the TPU for structural stability in the filter plate through analytical techniques designed and experimental verification is essential. As a result, TPU filter plate had maximum strain of 27.85 MPa at 20 bar pressure condition. This result is less than TPU stress-strain limit, which ensures the structural stability of the TPU material.

Electrical Properties of High Impact Polystyrene (HIPS)/Thermoplastic Urethane (TPU) Blend with Poly(styrene-co-maleic anhydride) as a Compatibilizer (상용화제 Poly(styrene-co-maleic anhydride) 첨가에 따른 고충격 폴리스티렌 (HIPS)/Thermoplastic Urethane (TPU) 블렌드의 전기적 특성)

  • Lee, Young-Hee;Lee, Tae-Hee;Kim, Won-Jung;Kim, Tae-Young;Yoon, Ho-Gyu;Suh, Kwang-S.
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • This study suggested antistatic material which can increase anti-static properties and mechanical strength by mixing polystyrene for conveying electronic stuffs with metal salt and ester compound as a anti-static agent. We studied about mechanical, thermal and electrical characteristics by changing the contents of MAH of poly(styrene-co-maleic anhydride), compatibilizer. As the result of measuring residue space charge of the blends of HIPS(75)/TPU(25)/poly(styrene-co-maleic anhydride)(MAH weight ratio : 25, 32, 43.5 wt%), we could find small residue charge in the blend which MAH(25 wt%) was added and it showed the highest values in tensile strength. Additionally we found out the material to which compatibilizer was added kept better anti-static properties than one to which compatibilizer was not added. In the event we could confirm that the adding of PS-co-MAH enables two polymers were mixed well when HIPS/TPU was blended and anti-static agent made easier dissipative in the blend.

Development of Eco-friendly Woven Floor Mat with High Resilience II - Characterization of TPU Coating Yarn and Floor Mat - (고탄성 특성을 보유한 친환경 우븐 바닥재에 관한 연구(II) - TPU 코팅사 및 바닥재의 특성-)

  • Lee, Sun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.635-640
    • /
    • 2012
  • In this study, thermoplastic urethane (TPU) coating yarns were prepared at various extruding temperatures. The fine structure and mechanical properties of resultant TPU coating yarns examined by the wide angle X-ray diffractometer (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile test. TPU coating yarns (prepared at extruding temperatures at $175^{\circ}C$) were confirmed as a stable fine structure that obtained excellent tensile strength and flexibility. The C samples prepared by optimized conditions made by TPU woven floor mat. The structure of the woven mat is $4{\times}4$ basket weave and have laminated with the EVA foam to obtained final TPU woven floor mat products. The resultant TPU woven floor mat was obtained to 1.5MN of tensile strength, 22% of the elongation, and 0.2MN of tear strength. The weight loss abrasion and the resilience by the ball rebound of the TPU-woven floor mat was prior to those of the PVC subsequently, we were able to develop a woven floor mat with TPU coating yarn and produce an eco-friendly high valuable woven floor mat using an interior product.

Development of 3D Printed Bags Using Roll-Type Printing Method (롤(roll) 형태의 출력방식을 활용하는 3D 프린팅 가방 개발)

  • Lee, Jiwon;Chun, Jaehoon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • 3D printing technology, also known as additive manufacturing(AM), has not been actively used in the clothing industry despite its potential for economic, environmental, and labor efficiency. Therefore, this study aims to propose a new 3D printing method for the clothing industry, which will be more readily accessible. This roll-type printing method can print wide-sized patterns at once using a 3D modeling program and a FDM 3D printer and help overcome the limitations imposed by the size of the printer. Then, to demonstrate the practical application cases of this printing method, bags of three designs were developed. Prior to product development, a thickness test was performed for stable printing using TPU(Thermoplastic Poly Urethane) filament, and a thickness of 0.45 mm was found to be most suitable for it. Next, the time efficiency test showed that the roll-type printing method takes less time compared to the general printing method in printing wide-sized patterns. Based on these tests, three bags, , and , were developed to confirm the suitability of the roll-type printing method for product development. The advantages of 3D roll-type printing can lie in overcoming of the spatial limitation, and the environmental sustainability as it can reduce waste from the production process. This study is significant in that it presents a new 3D printing method to improve the space limitations and time inefficiency of 3D printers.