• 제목/요약/키워드: thermoplastic materials

검색결과 296건 처리시간 0.023초

정위 마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성 (Isocenter Reproducibility with Mask Fixation System in Stereotactic Radiosurgery)

  • 이동준;손문준;이기택;최찬영;황금철;황충진
    • 한국의학물리학회지:의학물리
    • /
    • 제13권3호
    • /
    • pp.135-138
    • /
    • 2002
  • 치료대상 병소에 분할 방사선수술을 시술할 경우 회전중심(isocenter)은 정확하고 재현성 이 있어야 한다. 본 연구는 노발리스 방사선 수술장비와 정위 마스크 시스템을 사용한 분할방사선 수술에서 회전중심의 재현성을 측정하고 평가 하였다. 마스크는 열가소성 재질의 상용을 사용하였고 회전중심의 재현성을 측정하기 위해 고안된 머리 모양의 아크릴 팬텀에 맞도록 제작하였다. 팬텀의 내부에는 직경 5 mm의 아크릴봉을 수직으로 세우고 그 끝단을 회전중심으로 선택하였으며 예상되는 회전중심점에 pin hole을 낸 monochromic 필름을 설치하여 방사선 조사 후 회전중심의 재현성을 측정할 수 있도록 하였다. 측정 결과 회전중심은 공간오차가 평균 1 mm 이내이고 표준편차 또한 2 mm 이내여서 이미 보고된 타 문헌에서의 측정값과 비교해 볼 때 모든 측정값이 제시된 오차범위 내에 있었다. 결론적으로 분할방사선수술에 사용하는 정위 마스크 시스템은 매우 정확하고 재현성이 우수하였으며, 실제로 방사선 수술대상의 병소의 직경이 10 mm 정도 이상이라면 일반적인 한번의 고선량 방사선 수술에 정위 마스크 시스템의 사용이 가능할 것으로 사료된다.

  • PDF

인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발 (Development of two-component polyurethane metering system for in-mold coating)

  • 서봉현;이호상
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

열가소성 복합재료를 기반한 섬유금속적층판의 충격 거동에 관한 실험 및 수치적 연구 (Numerical and Experimental Investigation on Impact Performance of Fiber Metal Laminates Based on Thermoplastic Composites)

  • 이병언;강동식;박으뜸;김정;강범수;송우진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.566-574
    • /
    • 2016
  • Fiber metal laminates, which are hybrid materials consisting of metal sheets and composite layers, have contributed to aerospace and automotive industries due to their reduced weight and improved damage tolerance characteristics. In this study, the impact performance of the laminates, which are comprised of a self-reinforced polypropylene and two aluminum sheets, and the pure aluminum alloy sheet material were investigated experimentally via numerical simulation. In order to compare the impact performance, the laminates and aluminum alloy were examined by assessing the impact force, energy time histories, and specific energy absorption. ABAQUS is a commercial software that is used to simulate the actual drop-weight tests. Based on this study, it is noted that the impact performance of the laminates was superior to that of the aluminum alloy. In addition, a good agreement between the experimental and numerical results can be achieved when the impact force and energy time histories from the experiments and the numerical simulations are compared.

Effect of the Calcium Nitrate Solution Treatment on the Tensile, Bending, and Shear Properties of Silk Fabric

  • Park, Su-Zin;Kang, Ji-Young;Seol, Da-Won;Yang, Hye-Min;Lee, Ji-Min;Ahn, Ye-Ji;Han, Seo-Young;Kim, Jong-Jun
    • 패션비즈니스
    • /
    • 제14권6호
    • /
    • pp.39-52
    • /
    • 2010
  • Interests in creating three-dimensionally designed fabric materials are growing rapidly in the sectors of the fashionable textiles with the creativity, new functions, and aesthetics. A number of finishing methods have been developed and proposed to add or create new functions and designs for silk fabrics. Due to the strong hydrogen bonds between the molecules of silk fibroins, the thermal treatment methods used in thermoplastic fiber processing, which can easily deform the synthetic filament fabrics to endow three-dimensional appearance to the fabrics, are not applicable to the silk fabric treatment. In order to modify the fine structure of silk fiber, neutral salt solution treatment methods have been suggested. In this study, the effect of the calcium nitrate solution on the physical and mechanical properties of silk fabrics was investigated by using the KES(Kawabata Evaluation System) equipment. Based on these findings, relationships between parameters, for example, the thickness and the compressional energy, the thickness and the compressional linearity, and the air permeability and the pore area statistical analysis were investigated. The relationships between the process parameters such as treatment temperature/time and the resulting fabric property parameters were also analyzed by using several SAS procedures.

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Choi, Jong-Eun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.358-364
    • /
    • 2018
  • An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

3D 프린팅을 활용한 재료조합에 따른 온습도 변화 분석 (Analysis of Changes in Temperature and Humidity by Material Combination Using 3D Printing)

  • 이희란;김소영;이예진;이옥경
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.127-137
    • /
    • 2022
  • Recently, various clothing items are being developed using 3D printing technology, but comfort has become an issue while wearing them for a long time. Therefore, this study researched on how the temperature and humidity of the devices developed by 3D printing change depending on the material combination. Five types of material combinations (EVA foam, TPU density 10%, TPU density 30%, EVA foam+TPU density 10%, and EVA foam+TPU density 30%) were selected as variables, and the experiment was conducted for two different cases with and without a cover. All the ten types of samples were placed on the hot plate set at 36℃, and the surface temperature and humidity were measured at three different points for 10 minutes. As a result, the case with only TPU showed the greatest temperature change while the case with 100% EVA foam showed the least temperature change. The humidity of the surface layer gradually decreased with time for 100% EVA foam. For the case with TPU materials, the moisture was transferred to the surface layer at first, thereby increasing the humidity but then dropped significantly. Meanwhile, the cases with the cover on showed similar tendencies of change in both temperature and humidity where the overall temperature and humidity delivery were slow.

Evaluation of Mechanical Properties of Three-dimensional Printed Flexible Denture Resin according to Post-polymerization Conditions: A Pilot Study

  • Lee, Sang-Yub;Lim, Jung-Hwa;Shim, June-Sung;Kim, Jong-Eun
    • Journal of Korean Dental Science
    • /
    • 제15권1호
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate whether three-dimensional (3D)-printed flexible denture resin has suitable mechanical properties for use as a thermoplastic denture base resin material. Materials and Methods: A total of 96 specimens were prepared using the 3D printed flexible denture resin (Flexible Denture). Specimens were designed in CAD software (Tinkercad) and printed through a digital light-processing 3D printer (Asiga MAX UV). Post-polymerization process was conducted according to air exposure or glycerin immersion at 35℃ or 60℃ and for 30 or 60 minutes. The maximum flexural strength, elastic modulus, 0.2% offset yield strength, and Vickers hardness of 3D-printed flexible denture resin were assessed. Result: The maximum flexural strength ranged from 64.46±2.03 to 84.25±4.32 MPa, the 0.2% offset yield strength ranged from 35.28±1.05 to 46.13±2.33 MPa, the elastic modulus ranged from 1,764.70±64.66 to 2,179.16±140.01 MPa, and the Vickers hardness ranged from 7.01±0.40 to 11.45±0.69 kg/mm2. Conclusion: Within the limits of the present study, the maximum flexural strength, 0.2% offset yield strength, elastic modulus, and Vickers hardness are sufficient for clinical use under the post-polymerization conditions of 60℃ at 60 minutes with or without glycerin precipitation.

에틸렌-프로필렌 고무 스크랩을 이용한 친환경소재 개발에 관한 연구 : EPDM과 PP의 기능화 (A Study on the Development of Eco-friendly Materials Using EPDM Scrap : Functionalization of EPDM and PP)

  • 김섭;정경호
    • 청정기술
    • /
    • 제15권3호
    • /
    • pp.180-185
    • /
    • 2009
  • 자동차용 웨더스트립 제조공정 중 발생하는 에틸렌-프로필렌 고무 스크랩을 고온전단분쇄기를 이용하여 표면활성화 된 분말을 얻은 후 이를 폴리프로필렌과 블렌드하여 열가소성탄성체를 제조하기 위한 기초연구를 수행하였다. 에틸렌-프로필렌 고무 스크랩 분쇄 시 표면활성제를 1.5 phr 첨가하면 최적의 표면활성화 된 분말을 얻을 수 있었다. 폴리프로필렌의 경우는 maleic anhydride를 반응블렌드에 의해 그라프트시켜 기능화 하였다. 기능화된 에틸렌-프로펄렌 분말과 폴리프로필렌을 블렌드하여 열가소성탄성체를 제조할 때 계면젖음 특성이 중요하기 때문에 계면젖음성을 향상시키기 위하여 상용화제로 poly(ethylene-co-acrylic arid)를 폴리프로필렌에 첨가하였다. Poly(ethylene-co-acrylic acid)는 폴리프로필렌의 표면장력을 감소시켰으며 이로 인해 에틸렌-프로필렌 분말과의 계면젖음성이 크게 증진될 것으로 기대된다.

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.

바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발 (Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery)

  • ;임준우
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.190-196
    • /
    • 2024
  • 분리판은 바나듐 레독스 흐름전지(VRFB) 스택 내 셀의 전기적 통로 및 구조적 지지 역할 수행하는 매우 중요한 부품 중 하나이다. 흑연 소재는 전기 전도성이 뛰어나 분리판에 주로 사용되지만, 셀 스택에서 전극과 분리판 사이에 높은 계면 접촉 저항(ICR)이 발생하여 VRFB의 성능에 심각한 제한이 존재한다. 본 연구에서는 ICR의 한계를 해결할 수 있는 일체형 전극-분리판 조립체를 개발하는 것을 목표로 하였다. 일체형 조립체는 핫 프레스 방법을 활용하여 열가소성 및 열경화성 폴리머와 단일 탄소 펠트를 사용하여 제작하였다. 실험 결과, 일체형 조립체가 연속적인 전기 경로로 인해 감소된 전체 저항을 나타냄을 확인하였다. 또한, 충/방전 셀 테스트 결과에서 일체형 조립체는 향상된 셀 성능을 보여주었다. 따라서 개발된 일체형 전극-분리판 조립체는 기존의 분리판 및 전극 조립체를 대체할 수 있을 것으로 판단된다.