• Title/Summary/Keyword: thermoplastic composites

Search Result 204, Processing Time 0.03 seconds

Selection Attributes and Trends of Thermoplastic Elastomers for Automobile Parts

  • Kim, Seongkyun;Park, Joon Chul;Jo, Mi Young;Park, Jun Il;Bae, Jae Yeong;Choi, Seok Jin;Kim, Il
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2017
  • Thermoplastic elastomers (TPEs), a unique class of polymers, combine the processing ease of thermoplastics with the advanced properties of thermoset rubbers. TPEs can be remelted several times without any significant loss of properties, and can be molded into complex shapes using conventional processing equipment. Due to their characteristics, TPEs are ideal for use in a variety of applications in the automotive field. Although the TPE market of the Republic of Korea is currently at its niche, the increasing manufacturing push from major companies is expected to open up multiple opportunities for these products in the automotive sector. This manuscript highlights a detailed technological trend of the global automotive thermoplastic elastomers market.

Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers (폴리아미드계 열가소성탄성체의 합성, 특성 및 응용)

  • Lee, Kang-Suk;Choi, Myung-Chan;Kim, Sung-Man;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Thermoplastic elastomers (TPEs) exhibit both elastomeric behaviors at used temperature range and melt processibility. Polyamide based thermoplastic elastomers (TPAEs) are segmented block copolymers with hard blocks consisting of polyamide segments, while the soft blocks usually consist of flexible segments having a low glass transition temperature. The TPAE is one of the engineering TPEs possessing high thermal stability, excellent mechanical performances, chemical resistance and excellent processibility. And they showed wide range of physical and functional properties depending upon the structure of each segment and their relative contents and the hybridization with various inorganic particles. In this review, synthesis, properties, and possible applications of TPAEs are summarized.

A Trend of R&D in Enviromental Thermoplastic Elastomer (환경친화형 열가소성 탄성체 기술개발 동향)

  • Lee, Yong-Sang;Jeong, Jung-Chea;Park, Jong-Man
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.245-249
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied research. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

The Use of Chemical Additives to Protect SBS Rubbers Against Ozone Attack

  • Moakes, C.A.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • SBS thermoplastic elastomers offer an inexpensive alternative to vulcanised rubbers for many undemanding applications. They are, however, particularly susceptible to attack from atmospheric ozone leading to cracking as soon as any strain is applied. In most rubber applications some strain is unavoidable. In this paper a compounding approach to protecting SBS thermoplastic rubbers against ozone is described. An explanation is offered for why a protective effect Is observed only when certain combinations of additive are used. SBS elastomers are the most affordable class of thermoplastic rubbers. To achieve finished products resistant to ozone and without compromising the light colours often demanded, recourse must be made to blending with other saturated elastomers or replacement by hydrogenated (SEBS) types. The latter is a significantly more expensive alternative. Under laboratory conditions where the rate of ozone attack is increased by several decades, unprotected SBS begins to crack within a few hours. Several different protective agents are examined here, the best of which, a cyclic enol ether, $Vulkazon^{(R)}$ AFD, can extend the resistance to any cracking to several weeks by the use of a few percent by weight of additive. The systems reported neither discolour the polymer nor stain other materials with which it may be in contact. Use of the protective systems described here could enable SBS elastomers to compete in many applications with the more expensive SEBS polymers.

  • PDF

Fabrication and Properties of Natural Fiber-Reinforced Waste Wool/Polypropylene Composites (NFRP) (천연섬유강화 폐양모/폴리프로필렌 복합재료(NFRP)의 제조 및 특성)

  • Kim, Ki Hyun;Cho, Donghwan;Kim, Jong Hyun
    • Journal of Adhesion and Interface
    • /
    • v.9 no.2
    • /
    • pp.16-23
    • /
    • 2008
  • In this study, novel waste wool/polypropylene NFRPs (natural fiber reinforced polymer composites), which are constituted with waste wool discarded as industrial scrap during manufacturing processes of woven fabrics and general purpose thermoplastic polypropylene (PP), were fabricated by means of compressionmolding and their mechanical and thermal properties were characterized. The mechanical properties of PP resin were significantly improved by an introduction of waste wool to PP. In particular, as the loading of waste wool was 50 vol% in the NFRP, the flexural strength of the NFRP was increased about 20%, the flexural modulus about 143%, the tensile strength about 76%, and the tensile modulus about 90% in comparison with each of PP control. In addition, the maximum value of the heat deflection temperature (HDT) obtained with the NFRP was $138^{\circ}C$ at a 50 vol% loading of waste wool. This is $21^{\circ}C$ higher than the HDT of PP control. The result here suggests that waste wool be a potential candidate for a reinforcing material of thermoplastic matrix resins.

  • PDF

Impact and Fire Retardant Properties of Flax Fiber Reinforced Nanoclay Composites by Taguchi Method (다구치 기법을 사용한 나노클레이가 첨가된 아마섬유 강화 복합재료의 충격 거동 및 연소 특성)

  • Won, Cheon;Kim, Jin-Woo;Lee, Dong-Woo;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2013
  • This paper deals with the study of mechanical properties and impact energy absorbed by composites, made by using thermoplastic and thermoset as matrix, flax fiber and nanoclay as reinforcements. The nanoclay was sprayed on the fiber laminate directly after mixing with ethanol. This experiment designed by Taguchi method and have variable factors, i.e three types of fiber direction(F), three different nanoclay wt%(N) and three spray gun hole shapes(S). According to these conditions, composites were made and the optimum conditions were found to be F1N3S1, F1N2S1, F1N2S1 and F3N2S1 for thermoplastic, and F1N3S2, F1N3S2, F1N2S2 and F3N2S1 for thermoset which were matched with tensile strength, modulus, total impact absorbed energy and heat release rate respectively.

Revisit of Thermoplastic EPDM/PP Dynamic Vulcanizates

  • Lim, Jaehwa;Park, Jun Il;Park, Joon Chul;Jo, Mi Young;Bae, Jae Yeong;Choi, Seok Jin;Kim, Il
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • A comprehensive survey of the available literature showed that in the last few decades, there has been a growing interest in the use of thermoplastic vulcanizates (TPVs). TPVs are the second largest group of soft thermoplastic elastomers (TPEs) after styrene-based block copolymers, and offer a wide range of potential and proven applications, including in mechanical rubber goods, under-the-hood applications in the automotive field, industrial hose applications, electrical applications, consumer goods, and soft touch applications. Over the last two decades, TPVs have shown a strong and steady market growth (~12% per year). Commercialized TPVs are commonly based on blends of ethylene propylene diene monomer (EPDM) rubber and polypropylene (PP), and to a lesser extent on combinations of butyl or nitrile rubber with PP. EPDM/PP TPVs are characterized by finely dispersed crosslinked EPDM rubber particles (particles size varying between 0.5 and $2.0{\mu}m$) distributed in a continuous thermoplastic PP matrix. If the rubber particles of such a blend are small enough and if they are vulcanized well enough, then the properties of the blend are generally improved. This review article introduces various topics and aspects relevant to EPDM/PP TPVs. The development of TPVs, the use of various types of crosslinking systems and co-agents as crosslinking agents for PP/EPDM blends, the morphology and rheology of TPVs, and their typical end-use applications are also reviewed.

Physical Properties of Agro-Flour Filled Aliphatic Thermoplastic Polyester Bio-Composites

  • Eom, Young Geun;Kim, Hee Soo;Yang, Han Seung;Kim, Hyun Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2004
  • The purpose of this study was to investigate the water absorption and thickness swelling of biocomposites at room temperature. These properties of bio-composites mainly depend on the ability of the agro-flour to absorb water through hydrogen bonding between water and the hydroxyl groups of the holocellulose and lignin in the cell wall. As the content of agro-flour increased, the water absorption and thickness swelling of the bio-composites increased. The effects of agro-flour content and rice husk flour (RHF) particle size on the water absorption and thickness swelling of the bio-composites were evaluated. In general, wood-based materials showed significantly higher water absorption and thickness swelling than the bio-composites. This might be attributed to the ability of the polybutylene succinate (PBS) hydrophobic polymer to prohibit the water absorption and thickness swelling of the bio-composites, Therefore, the use of agro-flour filled PBS bio-composites, which exhibit improved dimensional stability in comparison with wood-based materials, is recommended.

Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix (유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가)

  • Kim, Neul-Sae-Rom;Jang, Yeong-Jin;Lee, Eun-Soo;Kwon, Dong-Jun;Yang, Seong Baek;Lee, Jungeon;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Fiber-reinforced thermoplastic composites are applied to transport industries to lightweight of body, and applications will be expanded gradually. In this study, the impregnation and mechanical properties of continuous glass fiber (GF) reinforced polycarbonate (PC) composites were evaluated with different molecular weights of PC. The continuous GF reinforced PC composite were prepared by using GF fabric and PC film via continuous compression molding method. The melting flow index and tensile strength of PC matrix were evaluated with different molecular weights. Mechanical properties (tensile, flexural, and compressive) and pore rate of GF/PC composite were evaluated with different molecular weights of PC. The fracture behavior was analyzed to fracture surface of GF/PC composite using FE-SEM images. As these results, it was condition of representing the best mechanical property that the GF/PC composite was prepared by using PC of 20,000 g/mol as matrix.