• 제목/요약/키워드: thermophilic anaerobic bacterium

검색결과 5건 처리시간 0.017초

Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1

  • Chimtong, Suphavadee;Tachaapaikoon, Chakrit;Pason, Patthra;Kyu, Khin Lay;Kosugi, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.284-292
    • /
    • 2011
  • An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were $60^{\circ}C$ and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, ${\beta}$-xylosidase, ${\alpha}$-L-arabinofuranosidase, ${\beta}$-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.

Isolation and Characterization of an Extremely Thermophilic Sulfur-metabolizing Bacterium from a Deep-sea Hydrothermal Vent System

  • Kwak, Yi-Seong;Kobayashi, Tetsuo;Akiba, Teruhiko;Horikoshi, Koki;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.36-40
    • /
    • 1994
  • A water sample was taken from a black smoker chimney of a deep-sea hydrothermal vent by using an unmanned submersible "Dolphin 3K". The temperature of the hydrothermal fluid from the black smoker was $276^{\circ}C$. After isolation by repeated serial dilutions, An extremely thermophilic bacterial strain was selected. The strain designated as DT1331, was an anaerobic, non-motile, coccoid shaped bacterium with about 0.5 to $1.0\;\mu\textrm{m}$ in diameter. The strain DT1331 could grow up to $93^{\circ}C$, but the optimum temperature of this strain was $80^{\circ}C$. The growth occurred in the pH range of 4.5 to 8.5 and the optimum pH was 6.0. The strain DT1331 required 1% to 5% NaCl for growth and cell lysis was observed below 1% NaCl concentration. The bacterium could grow on polypeptides such as tryptone, peptone, soytone and on proteins such as casein or gelatin. However, no growth was observed on single amino acids, sugar and organic acids. Hydrogen gas was detected slightly during growth. This bacterium obligately required elemental sulfur and hydrogen sulfide gas was produced during growth.

  • PDF

유기산 생산 세균을 고정화학 2상 메탄발효조에 의한 주정 폐수의 고효율 소화 (A Study on the Use of an Immobilized-Cell Acidogenic Reactor for the High Rate Digestion of a Distillery Wastewater)

  • 배재근;고종호;김병홍
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.407-414
    • /
    • 1994
  • Anaerobic fermentative bacteria were isolated from the acidogenic reactor of a labora- tory scale 2-stage anaerobic digestor. The isolate 1-6 was selected for its ablity to produce more fatty acids from distillery wastewater than others, and was identified as a strain of Clostridium. The isolate Clostridium sp. 1-6 is a thermophilic bacterium growing at 55$\circ$c , and grew best at pH 5.5. An acidogenic reactor using immobilized cells of the isolate Clostridium sp. 1-6 removed about 15% of COD from distillery wastwater as hydrogen, producing about 50 mM butyrate and about 10 mM acetate, when the reactor was operated at the hydraulic retention time(HRT) of 0.8 hr. It is proposed that this system can be used to convert the distillery wastewater to hydrogen and butyrate. More than 90% of COD was removed from the wastewater by anaerobic digestion using a 2-stage digestor consisting of a UASB methanogenic reactor and an acidogenic reactor of the immobilized cells of isolate Clostridium sp. 1-6.

  • PDF

미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성 (Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria)

  • Yul Roh;Hi-Soo Moon
    • 한국광물학회지
    • /
    • 제14권2호
    • /
    • pp.111-118
    • /
    • 2001
  • 미생물을 이용한 광물 합성은 현재 초기 연구 단계에 있으나 신소재 개발 측면에서 다양한 활용 가능성을 보이고 있다. 이 연구의 목적은 철 환원 박테리아를 이용한 코발트로 치환된 자철석의 합성 및 이의 광물학적 특성을 알아보는데 있다. 호열성 철 환원 박테리아인 TOR-39는 65에서 비정질 철 수화물과 코발트 이온 ($Co^{2+}$$Co^{3+}$ )을 환원 및 침전시켜 자철석을 합성하였다. EPMA 분석과 X-선회절분석 결과에 의하면 호열성 박테리아가 철수화물을 환원시켜 자철석을 합성시킬 때, 코발트 이온도 동시에 환원 및 침전시켜 코발트로 치환된 자철석을 형성시킨다. 미생물에 의한 코발트로 치환된 자철석의 합성은 나노미터 크기로 생성되기 때문에 산업적으로 많은 이용 가치가 있을 것으로 본다.

  • PDF

A Themotropic Behavior of Egg PC Liposome Containing the Very Long Chain Fatty Acyl Component,${\alpha},{\omega}$-13,16-Dimethyloctacosanedioate Dimethyl Ester(DME C30) Isolated from The Thermophilic Anaerobic Bacteria, Thermoanaerobacter ethanolicus

  • 김현명;강세병;정승호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.979-983
    • /
    • 2001
  • Thermoanaerobacter ethanolicus is a strictly anaerobic and thermophilic bacterium whose optimum temperature ranges over $65-68^{\circ}C.$ T. ethanolicus was known to contain a bipolar very long chain fatty acyl component such as $\alpha$, $\omega-1316-dimethyloctacosanedioate$, as one of the major membrane components. However, exact physiological role of this unusual component in the membrane remains unknown. Such a very long chain fatty acyl component, $\alpha$, ${\omega}-1316-dimethyloctacosanedioate$, dimethyl ester (DME C30), was isolated, and purified from the membrane of T. ethanolicus. As a function of added concentrations of the $\alpha$, $\omega-1316-dimethyloctacosanedioate$, dimethyl ester (DME C30) or cholesterol into the standard liposomes, the acyl chain ordering effect was investigated by the steady-state anisotropy with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a fluorescent probe. Acyl chain order parameter (S) of vesicles containing DME C30 is higher comparing with phosphatidylcholine (PC) only vesicles. This result was discussed thermodynamically with the aid of the simulated annealing molecular dynamics simulations. Through the investigation of all the possible conformational changes of DME C30 or cholesterol, we showed that DME C30 is very flexible and its conformation is variable depending on the temperature comparing with cholesterol, which is rigid and restricted at overall temperature. We propose that the conformational change of DME C30, not the configurational change, may be involved in the regulation of the membrane fluidity against the changes of external temperature.