• 제목/요약/키워드: thermoelectric

검색결과 886건 처리시간 0.03초

다중벽 탄소나노튜브 혼입 알칼리 활성 슬래그 복합재료의 열전 에너지 수확 성능평가 (Evaluation on the thermoelectric energy harvesting performance of multi-walled carbon nanotube-embedded alkali activated slag composites)

  • 박형민;양범주
    • 도시과학
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 2020
  • The thermoelectric characteristics of alkali activated slag composites containing multi-walled carbon nanotubes (MWCNT) was investigated in the present study. Three different MWCNT contents and exposed temperatures were considered, and their thermoelectric-related properties and internal structures were analyzed. It was found that the alkali activated slag composite with MWCNT 2.0 wt.% and the exposed temperature of 150℃ were the optimal condition to obtain the highest Seebeck coefficient and power factor. Based on the feasibility study, the extended size thermoelectric module with 130 elements was fabricated, and tested the electricity production capacity. Consequently, the present thermoelectric module produced 30.83 ㎼ of electricity at ∆T=178.4℃.

배열회수 발전용 열전소재 기초연구 (A Study of Thermoelectric Material for Waste Heat Recovery)

  • 김호영;김참
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.175-180
    • /
    • 2008
  • Thermoelectric materials convert temperature difference to electric power for power generation and vice versa for refrigeration. Recent advances in enhancing the thermoelectric figure-of-merit shed light on efficient power generation from the waste heat available in industries and vehicles. Nanoscale phenomena with both nanoscale constituent-embedded bulk samples and nanoscale materials proving enhanced thermoelectric performance have been widely reviewed. Bulk materials of crystal-orientation and nano-structured particle embedding seem to promise a higher thermoelectric figure-of-merit and an effective power generation application. As a preliminary study, Si-Ge nanocomposite was prepared with spark plasma sintering method and its properties were examined.

  • PDF

열전모듈을 이용한 발전기의 패키징 (The Packaging Technology Thermoelectric Generator)

  • 한경목;황창원;백동규;최승철
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2000
  • 폐수의 온도차등의 폐열 에너지를 이용한 에너지 절약 시스템으로써 구조가 간단한 소형의 열전 발전기를 개발하였다. 열원으로 끊는 물을 이용하고, Bi-Te 계 열전반도체 모듈 16개를 전기적으로 직렬로 연결하고 패키징하여 열전 변환 시스템을 제작하였다. 열전 발전기의 출력은 온도차가 75 K, 전기저항이 40$\Omega$, 전류가 0.35 A에서 약 4.5 W정도를 얻을 수 있었다.

  • PDF

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.401-405
    • /
    • 2011
  • Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.

열전냉각 모듈을 이용한 국소 냉각에 관한 연구 (A Study on the Hot Spot Cooling Using Thermoelectric Cooler)

  • 김욱중;이공훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.640-645
    • /
    • 2007
  • An experimental apparatus to show the hot spot cooling of an IC chip using a thermoelectric cooler is developed. The spot heating in very small area is achieved by the applying CO$_2$ laser source and temperatures are measured using miniature thermocouples. The active effects of thermoelectric cooler on the hot spot cooling system such as rapid heat spreading in the chip and lowering the peak temperature around the hot spot region are investigated. The experimental results are simulated numerically using the TAS program, which the performance characteristics such as Seebeck coefficient, electrical resistance and thermal conductivity of the thermoelectric cooler are searched by trial and error. Good agreements are obtained between numerical and experimental results if the appropriate performance data of the thermoelectric cooler are given.

  • PDF

Nanowires in Thermoelectric Devices

  • Davami, Keivan;Lee, Jeong-Soo;Meyyappan, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.227-233
    • /
    • 2011
  • The low efficiency of bulk thermoelectric materials has limited the widespread application of thermoelectric power generation. Theoretical and experimental investigations indicate that materials prepared in the form of nanowires show higher thermoelectric coefficients, thus promising to revolutionize the field. This article reviews the basics of thermoelectric power generation, conventional devices, the role of nanowires and the current status of the field.

열전소자 구조에 따른 COB LED의 방열 성능 비교 분석 (A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure)

  • 김효준;강은영;임성빈;황근창;김용갑
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.189-194
    • /
    • 2015
  • 본 논문에서는 열전소자의 구조에 따른 COB LED의 방열성능을 비교 분석하였다. COB LED의 발열부분과 접합하는 열전소자는 구리박판 구조와 세라믹 구조의 열전소자를 사용하였다. COB LED와 열전소자의 접합부분은 접촉식 온도계를 통해 온도 분포를 측정하였고, 각각의 열전소자는 0.1A, 0.3A, 0.5A, 0.7A의 전류를 입력시켜서 온도 변화를 측정하였다. COB LED의 열 응집현상이 나타나는 접합부분의 온도는 0.7A를 인가하였을 때 구리박판 구조의 열전소자에서 $59^{\circ}C$로 측정되었고, 세라믹 구조의 열전소자는 $67^{\circ}C$로 나타났으며, 구리박판 열전소자가 세라믹 구조의 열전소자 보다 $9^{\circ}C$가 낮게 측정됨으로써 방열성능이 더 우수함을 보였다.

열전소자 내부 층간 결함과 열성능 관계에 관한 연구 (Research on the Relationship between Thermoelectric Module with Defects and Thermal Performances)

  • 최철준;고가진;김재열;정윤수
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.125-133
    • /
    • 2016
  • From the first application of a thermoelectric module to nowtoday, it has been more than half a century. The application of a thermoelectric module is becoming more and more widely accepted since, people's requirement rely more and more on the efficiency of thermoelectric modules and their reliability become higher and higher. So people pay more and more attention to the thermoelectric module. In Around the world, the more research for into improving the efficiency of thermoelectric modules is focused on the current materials. at present. However, the research of into available materials had has some limitations, and the research of materials had reached a bottleneckthere are limits to current applications. On the other hand, from the production process, if we assembled by materials withoutmodules without any damages and achieve the ideal state of a joint, we can make the a product to maximize performance and have a longer service life. SoTherefore, in this study we will prove the relationship between the any defects inside and the efficiency of a thermoelectric module to improve the quality management and performance of modern thermoelectric modules at present.

MOCVD를 이용한 BiSbTe3 박막성장 및 열전소자 제작 (Properties of BiSbTe3 Thin Film Prepared by MOCVD and Fabrication of Thermoelectric Devices)

  • 권성도;윤석진;주병권;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.443-447
    • /
    • 2009
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_{2}Te_{3}$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $5{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_{2}Te_{3}$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_{2}Te_{3}$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3 ${\mu}m$ is obtained at the temperature difference of 45 K.