• 제목/요약/키워드: thermoelectic materials

검색결과 2건 처리시간 0.019초

압축응력에 의한 박막 위 나노선 성장법을 이용한 Bi-Te 코어/쉘 열전 나노선 합성 (Bi-Te Core/Shell Nanowires Synthesis Based on On-Film Formation of Nanowires Method for Thermoelectric Applications)

  • 강주훈;함진희;노종욱;노진서;이우영
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.445-448
    • /
    • 2010
  • For an enhanced thermoelectric performance, one-dimensional heterostructure nanowires were created that consisted of aBi core and Te shell. The structure was fabricated by depositing Te in-situ onto a Bi nanowire grown by our unique OFF-ON (on-film formation of nanowires) method. After examining a cross-sectional TEM image, it was found that diffusive interface was formed between Bi and Te. Selected area electron diffraction revealed that the crystallinity of the Te shell was some what lower compared to the highly single-crystalline Bi core. The Bi-Te core/shell nanowires can be a smart structure that suppresses phonon transport by several scattering mechanisms, making the OFF-ON method the simplest way to realize that structure.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF