• Title/Summary/Keyword: thermodynamic solution

Search Result 310, Processing Time 0.027 seconds

Studies on the Miscibility of Methylcellulose/Chitosan Blends by Thermogravimetric Analysis and Thermodynamic Mechanical Analysis (열분석기기를 이용한 메틸셀룰로오스/키토산 블랜드의 상용성에 관한 연구)

  • Park, Jun-Seo;Shin, Ki-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.18-26
    • /
    • 2002
  • Films of methylcellulose(MC), chitosan and their blends were prepared using water and acid solution as a solvent. The transition behavior and miscibility of polymers and their blends were characterized by dynamic mechanical analysis(DMA) and thermogravimetric analysis(TGA). The DMA analysis of PEG400/MC blends has shown that PEG400 was compatible with MC and was effective plasticizer since the curves of $tan{\delta}$ against temperature exhibited single peak, corresponding to single glass transition temperature, which were displaced to lower values with increasing PEG400 content. Results of DMA analysis and TGA analysis of MC/chitosan blends indicate that there are some miscibility between MC and chitosan in the blends, attributed to the similarities between two polysaccharides and interactions of two polymers in the blends. The inclusion of PEG400 in the blends increase the miscibility between two components in the blends.

  • PDF

Lornoxicam & Tenoxicam Drugs as Green Corrosion Inhibitors for Carbon Steel in 1 M H2SO4 Solution

  • Fouda, A.S.;El-Defrawy, A.M.;El-Sherbeni, M.W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • Inhibition performance of Lornoxicam & Tenoxicam against corrosion of carbon steel in 1M $H_2SO_4$ solutions was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The inhibition efficiency increased with increasing inhibitor's concentration, but decreased with increase in temperature. Potentiodynamic polarization curves showed that, the inhibitors were of mixed type. The apparent activation energy ($E^*_a$) and other thermodynamic parameters for the corrosion process have also been calculated and discussed. The inhibition of carbon steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follows Temkin adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

A Study of Aero-thermodynamic Ablation Characteristics for Rocket Nozzle (로켓노즐내부의 공기 열역학적 삭마특성에 관한 연구)

  • Seo, J.I.;Jeong, J.H.;Kim, Y.I.;Kim, J.H.;Song, D.J.;Bai, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.282-287
    • /
    • 2001
  • The CSCM Upwind method and Material Transport Analysis (MTA) have been used to predict the thermal response and ablation rate for non-charring material to be used as thermal protection material (TPM) in KSR-III test rocket nozzle. The thermal boundary conditions such as cold wall heat-transfer rate and recovery enthalpy for MTA code are obtained from the upwind Navier-Stokes solution procedure. The heat transfer rate and temperature variations at rocket nozzle wall were studied with shape change of the nozzle surface as time goes by. The surface recession was severely occurred at nozzle throat and this affected nozzle performance such as thrust coefficient substantially.

  • PDF

Dissolution and Reprecipitation Behavior of TiC-TiN-Ni Cermets During Liquid-Phase Sintering

  • Yoon, Choul-Soo;Shinhoo Kang;Kim, Doh-Yeon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.124-128
    • /
    • 1997
  • An attempt was made to understand the dissolution and reprecipitation behavior of the constituent phases such as TiC, TiN, and Ti(CN) in TiC-TiN-Ni system. During the liquid-phase sintering the TiC phase was found to dissolve preferentially in Ni binder. The solid-solution phase, Ti(CN), formed around the TiN phase, resulting in a core/rim structure. This result was reproduced when large TiC particles were used with fine TiN particles. The path for the microstructural change in TiC-TiN-Ni system was largely controlled by the difference in the interfacial energy of each phase with the liquid binder phase. The results were discussed with thermodynamic principles.

  • PDF

Development of Polymeric Adsorbents for the Treatment of Colored Waste Waters and Re-use of the Treated Water (II) - Quaternary Aminized Cellulosic Adsorbent - (유색폐수처리를 위한 고분자 흡착제의 개발과 처리수의 사용(II) - 4급 아민화 셀룰로오스 흡착제 -)

  • Soo-Min Park;Woo-Kyung Sung
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.131-135
    • /
    • 1992
  • Quaternary aminized cellulosic adsorbents (C $A_{QA}$ ) which exhibit adsorption capacities for anionic dyestuffs for the treatment of colored waste water and re-use of the treated water were studied. The isotherms and thermodynamic parameters of C.I. Acid Orange 7, solution considered as a model of negatively charged coloring matters for C $A_{QA}$ , were determined. Batch method and flow method were employed to determine decoloring capacity of cellulosic adsorbents for Orange 7. The cellulosic adsorbents exhibited much better adsorption capacity than activated carbon. Furthermore the exhausted cellulosic adsorbents could be readily regenerated by washing with dilute sodium hydroxide.

  • PDF

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

Preliminary Study on the Total Dissolved Organics Measurement and Their Contribution to Conductivities at Elevated Temperature

  • Kim, Kwang-Rag;Kang, Hee-Suk;Park, Seung-Woo;Lee, Sung-Ho;Ahn, Do-Hee;Lee, Han-Soo;Hongsuk Chung;Sung, Ki-Woung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.127-132
    • /
    • 1996
  • Total organic carbon (TOC) derived from organics is one of tile possible contamination in the reactor water system and causes of pH change and high conductivity levels. Measurements of total dissolved oxidizable carbon were carried out and its contribution to conductivities at elevated temperature was studied by using tile thermodynamic equilibrium analysis in carbonic acid system. The calculated conductivities were in good agreement with tile levels observed for tile formation of carbonic acid from salicylic acid solution.

  • PDF

Adsorption Treatment of Azo Dye Containing Wastewater using Activated Carbon and Glass Fiber as an Adsorbent (활성탄과 유리섬유를 흡착제로 이용한 아조염료 함유 폐수의 처리)

  • Baek, Mi-Hwa;Jeon, Hyein;Lee, Ji-Ae;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.370-374
    • /
    • 2009
  • Adsorption characteristics of glass fibers, obtained from the spent lithium primary batteries recycling process, were investigated for the removal of Acid Red 27 dye from aqueous solution. The batch data clearly showed that increasing the initial sorptive concentration apparently enhanced the amount adsorbed and the uptake process followed the pseudo-second order rate model. The equilibrium adsorption data at different initial sorptive concentrations were fitted well to Freundlich and Langmuir adsorption isotherms. Moreover, the increase in temperature, favored the uptake of dye on this solid, indicated the process was endothermic in nature. Further, using the temperature dependence sorption data obtained at different temperatures was used to estimate various thermodynamic parameters.

Changes of Electrical Conductivity and Temperature Caused by Cathode Erosion in a Free-Burning Argon Arc

  • Jeon, Hong-Pil;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.255.2-255.2
    • /
    • 2014
  • Electrode erosion is indispensable for atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from arc plasmas to contacts, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. Our investigation is concerned with argon free-burning arcs with anode erosion at atmospheric pressure by computational fluid dynamics (CFD) analysis. We are also interested in the energy flux and temperature transferring to the anode with a simplified unified model of arcs and their electrodes. In order to determine two thermodynamic quantities such as temperature and pressure and flow characteristics we have modified Navier-Stokes equations to take into account radiation transport, electrical power input and the electromagnetic driving forces with the relevant Maxwell equations. From the simplified self-consistent solution the energy flux to the anode can be derived.

  • PDF