• Title/Summary/Keyword: thermo-optic

Search Result 80, Processing Time 0.024 seconds

Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber (측면 연마 광섬유를 이용한 용액의 광학 특성 측정)

  • Lee, Hyeon Jin;Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.

Implementation of Polymeric Thermo-optic Modulator using a New Vertical Asymmetric Optical Coupler (새로운 수직형 비대칭 광 결합구조를 이용한 폴리머 열광학 변조기 구현)

  • Lee, So-Yeong;Gwon, Jae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.39-48
    • /
    • 2000
  • We newly proposed a polymer based vertical asymmetric optical coupler, which was characterized by simple fabricating procedure and short coupling length. And we fabricated a thermo-optic modulator using the polymeric optical coupler. We optimized the proposed device by coupling characteristic analysis. In a TE polarized 1.33${\mu}{\textrm}{m}$ wavelength, we obtained very short coupling length(L=277.6${\mu}{\textrm}{m}$) with 0.4${\mu}{\textrm}{m}$ thickness of middle layer, high coupling efficiency(94%), and asymmetric vertical waveguides with n$_{u}$ = 1.522, n$_{l}$ = 1.51. We implemented vortical asymmetric thermo-optic modulator with lower inverted rib waveguide and upper slab waveguide. In the 600Hz bandwidth and 4.5㎽ input power, the extinction ratio of the mode was 17㏈ with an insertion loss of 4.5㏈.

  • PDF

Tunable Mechanically Formed Long-Period Fiber Gratings using Periodically Arrayed Metal Wires (금속선의 주기적인 배열을 이용하여 기계적으로 형성한 파장 가변 장주기 광섬유 격자)

  • Sohn, Kyung-Rak;Kim, Kwang-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.401-405
    • /
    • 2005
  • In this paper, we have presented mechanically formed long-period fiber gratings using periodically arrayed brass wires with a $250-{\mu}m$ diameter and realized the function of current-controlled wavelength-tuning. With the thermo-optic effect of the surrounding medium around the fiber cladding, the continuous displacement of the resonance wavelengths is achieved through the resistant heat of the wire which changes the refractive index of surrounding material. The tunability for each mode as a function of an applied electrical power is investigated. When the glycerin is used as a thermo-optic material, the measured tuning ranges of $LP_{03}$ and $LP_{04}$ within electrical power of 20 W reach to 14 nm and 48 nm, respectively. The experimental results are in good agreement with the theoretical that which is analyzed by a geometric-optics approximation.

Silicon Fabry-Perot Tunable Thermo-Optic Filter (실리콘 파브리-페로 파장가변 열광학 필터)

  • Park, Su-Yeon;Kang, Dong-Heon;Kim, Young-Ho;Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2008
  • A silicon Fabry-Perot tunable thermo-optic filter for WDM using the thin film silicon coating is proposed and experimented. The filter is implemented by using the CMP process and polishing both sides of the commercial silicon wafer with normal thickness of 100${\mu}m{\pm}$1%. The filter also has 2-layer or 3-layer dielectrics thin film coating mirror which are alternated ${\lambda}$/4 layers of $SiO_2$($n_{low}$=1.44) and a-Si($n_{high}$=3.48) for the central wavelength of 1550nm by RF sputtering. The experiment shows that FSR is 3.61nm and FWHM is 0.56nm and the finesse is 6.4 for 2-layer mirror with the reflection of 61%, and that FSR is 3.36nm and FWHM is 0.13nm and the finesse is 25.5 for 3-layer mirror with the reflection of 89%. According to thermo-optic effect, the transmitted central wavelength of 1549.73nm at $23^{\circ}C$ is shifted to 1550.91nm at $30^{\circ}C$ and 1553.46nm at $60^{\circ}C$ for 2-layer mirror, and the transmitted central wavelength of 1549.83nm at $23^{\circ}C$ is shifted to 1550.92nm at $30^{\circ}C$ and 1553.07nm at $60^{\circ}C$ for 3-layer mirror.

  • PDF

Fabrication and characterization of plastic fiber optic temperature sensor using TSCM (TSCM을 이용한 플라스틱 광섬유 온도센서의 제작 및 특성평가)

  • Lee, Bong-Soo;Heo, Hye-Young;Cho, Dong-Hyun;Kim, Sin;Cho, Hyo-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • In this study, a plastic fiber-optic temperature sensor is fabricated using TSCM(thermo sensitive clouding material) which changes its light transmittance with temperature and the characteristics of this sensor are evaluated. The fabricated fiber optic temperature sensor is the reflector type using a Y-coupler. The optimum light source and reflector are decided by measuring the amount of reflected light through TSCM. Also, the optimum distance from the end of sensor to the surface of reflector is determined. Then the relationship between the amount of measured reflected light and the temperature of TSCM is found.

Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.282-287
    • /
    • 2012
  • In this paper, we have proposed a principle to design a compact and temperature independent electro-optic switch based on a slotted photonic crystal directional coupler (SPCDC). Infiltration of the slotted silicon photonic crystal with polymer enhances the slow light and decreases the switching length, whereas the different signs of thermo-optic coefficients of the polymer and silicon make the proposed switch stable within $25^{\circ}C$ to $85^{\circ}C$ temperature range. The SPCDC structure is modified to increase poling efficiency of the polymer in the slot and to flatten the dispersion diagram of the even mode to minimize the switching length.

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

Optical Temperature Sensor Based on the Etched Planar Waveguide Bragg Grating Considering Linear Thermo-optic Effect (평면 광도파로 상의 식각 브래그 격자를 이용한 광온도 센서의 개발)

  • Kook-Chan Ahn;Sang-Mae Lee
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating, investigation of the grating reflection characteristics, and temperature measurement capabilities. The typical bandwidth and reflectivity of the surface etched grating has been ~0.2nm and ~7%, respectively, at a wavelength of ~1552nm. The temperature-induced wavelength change of the optical sensor is found to be slightly non-linear over ~20$0^{\circ}C$ temperature range. Theoretical models for the grating response of the sensor based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.