• Title/Summary/Keyword: thermo-mechanical load

Search Result 110, Processing Time 0.022 seconds

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Study on Temperature and Vibration of BLDC Motor (BLDC 모터의 온도 및 진동 특성 연구)

  • Ye, Jung-Woo;Son, Mun-Gyu;Choe, Myoung-Hwan;Kim, Dae-Hwa;Cho, Yeon-Su;Lee, Hyun-Seok;Shim, Jae-Sool
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • In this paper, transient temperature and vibration characteristics of a brushless DC (BLD(c) motor are studied for external load (165W~495W) and rotational speed (2000 rpm~4000 rpm). For experiment, a simple measurement system is developed to allow a change in load and speed for measuring transient temperature and vibration simultaneously. Temperature and vibration were also measured under the conditions of natural convection and forced convection. Vibrations in the directions of x-axis (#Ch1), y -axis (#Ch2) and z -axis (#Ch3) were obtained by three accelerometers and temperature was obtained by a thermo-couple with respect to time until the motor is steady. Experimental results show that the amplitude of vibration is higher in the order of z-axis (#Ch3), x -axis (#Ch1) and y-axis (#Ch2) and the amplitude of vibration at the forced convection conditions is 10.6% to 17.8% lower than that of vibration at the natural convection. However, the ratio of the vibration value is similar on average regardless of external convection condition.

Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model (쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석)

  • Jong wan Yun;So yeon Moon;Sang-Shin Park
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

Creep Behaviours of Duplex Stainless Steel (2상 스테인리스강(STS 329J1)의 크리프 특성)

  • Hwang Kyung Choong;Kwon Jong Wan;Yoon Jong Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.42-47
    • /
    • 2005
  • Micro duplex stainless steel is used to denote a fine scale two-phase micro structure consisting austenite and firrite. The development of this structure was done by proper thermo-mechanical processing. The objective of present investigation is to study creep characteristics of this alloy. Since we have little design data about the W behaviors of the alloy. An apparatus has been designed and built fir conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of micro duplex stainless steel products and we have gotten the 1311owing results. First the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy Gradually decreases as the stresses become higher. Thirdly, the constant of Larson-Miller Parameters on this alloy is estimated as about 5. Last, the fiactographs at the creep rupture show both the ductile and brittle fracture modes according to the creep conditions.

Derivation of TMA Slagging Indices for Blended Coals

  • Park, Ho Young;Baek, Se Hyun;Kim, Hyun Hee;Park, Sang Bin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • The present paper describes the slagging field data obtained with the one-dimensional process model for the 500 MW tangentially coal fired boiler in Korea. To obtain slagging field data in terms of thermal resistances [$m^2{\cdot}^{\circ}C/kW$], a number of plant data were collected and analyzed with the one-dimensional modelling software at 500 MW full load. The slagging field data for the primary superheater were obtained for six coal blends, and compared with two TMA (Thermo-Mechanical analyzer) slagging indices and the numerical slagging index, along with the conventional slagging indices which were modified with the ash loading. The advanced two TMA indices for six blended coals give a good slagging tendency when comparing them with the slagging field data, while the modified conventional slagging indices give a relatively poor agreement.

Improved phenomenological modelling of transient thermal strains for concrete at high temperatures

  • Nielsen, Claus V.;Pearce, Chris J.;Bicanic, Nenad
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.189-209
    • /
    • 2004
  • Several extensions to the Thelandersson phenomenological model for concrete under transient high temperatures are explored. These include novel expressions for the temperature degradation of the elastic modulus and the temperature dependency of the coefficient of the free thermal strain. Furthermore, a coefficient of thermo mechanical strain is proposed as a bi-linear function of temperature. Good qualitative agreement with various test results taken from the literature is demonstrated. Further extensions include the effects of plastic straining and temperature dependent Poisson's ratio. The models performance is illustrated on several simple benchmark problems under uniaxial and biaxial stress states.

Fatigue Characterization of NiTiCu Shape Memory Alloys (NiTiCu 형상기억합금의 피로특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2014
  • Recently, the actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. This paper presents a study on the fatigue life of shape memory alloy (SMA) actuators undergoing thermally induced martensitic phase transformation under various stress levels. shape memory recoverable stress and strain of Ti-44.5at.%Ni-8at.%Cu alloys were by means of constant temperature tensile tests. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before the tests. the results were summarized as follows. The martensite inducing stress incerased with the increasing of the Cu-contents. The fatigue life decreased with the increasing of the test load and the Cu-content. The data acquired will be very useful during the design process of an SMA NiTiCu element as a functional part of an actuator.