• Title/Summary/Keyword: thermo-mechanical

Search Result 1,107, Processing Time 0.026 seconds

3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator (로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석)

  • Lee, Sun-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, the thermal insulator structure of a real rocket which is fabricated in a way that laminated composite rings are connected in series is analyzed using 3-dimensional axisymmetric finite element models. Simulation of cowl zone using a real operating conditions provides that the stress distribution in the laminated composite ring is largely influenced by ply-angles, axial dimensions, and boundary conditions. Notably the plylift that is the precursor to the wedge-out occurs in the ring-to-ring bonding region. It is hypothesized that after the plylift the wedge is dropped out due to the shear stresses in the ply-angle direction and axial compressive stresses.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery (리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향)

  • Park, Soo-Gil;Park, Jong-Eun;Lee, Hong-Ki;Lee, Ju-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF

Synthesis and characterization of silicone-containing polyamideimide and its gas separation

  • 이용범;심진기;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.83-84
    • /
    • 1997
  • 1. INTRODUCTION : Polyimides containing siloxane moiety(poly(imide siloxane), or polysiloxaneimide) have been synthesized because of their some merits over polyimide itseft. Polyimides have excellent thermal and mechanical properties but their poor solubility and processibility in their fullly imidized form give disadvantages in applications. Incorporation of siloxane units make it possible to increase solubility and processibility, and also impart impact resistance, low moisture uptake, low dielectric constant, thermo-oxidative resistance, good adhesion properties to substrate and etc.. Incorporation methods of siloxane groups into the polyimide was mainly copolymerization or terpolymerization between oligomeric dimethylsiloxane and aromatic dianhydride. A few methods of introducing siloxane units in functional groups of polyimide was reported. In our laboratory poly(amideimide siloxane) and poly(imide siloxane) were prepared and the study about their thermal kinetics was performed. In separation membrane area, polysiloxaneimides was utilized in pervaporation and gas separation. Polyimides in gas separation show high selectivity and very low permeability, and introduction of siloxane segments increase permeability with low decrease in selectivity. We aimed to introduce silicone segments into poly(amic acid) state and synthesize polymer partially imidized, and also show the gas separation characteristics of the synthesized polymer.

  • PDF

Temperature Control using Peltier Element by PWM Method

  • Pang, Du-Yeol;Jeon, Won-Suk;Choi, Kwang-Hoon;Kwon, Tae-Kyu;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1400-1404
    • /
    • 2005
  • This paper presents the temperature control of aluminum plate by using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is charged to Peltier element, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with current control and operating cooling fan only while cooling duration. Operating cooling fan only while cooling duration is proper to get more rapid heating and cooling duration. As a result of experiment, it takes about 100sec period to repeating temperature between $35^{\circ}C$ and $70^{\circ}C$ and about 80sec from $40^{\circ}C$ to $70^{\circ}C$ in ambient air temperature $25^{\circ}C$ and while operating cooling fan only in cooling duration. Future aim is to apply this temperature control method in actuating SMHA(special metal hydride actuator) which is applicable in Siver project acting in low frequency range by using Peltier element for heating and cooling.

  • PDF

Improvement of Impact Resistance of Composite Structures using Shape Memory Alloys (형상기억합금을 이용한 복합재료 구조물의 저속충격특성 향상)

  • Kim, Eun-Ho;Rim, Mi-Sun;Lee, In;Kim, Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.453-456
    • /
    • 2009
  • Impact resistance of shape memory alloy hybrid composite(SMAHC) plates were experimentally investigated. Shape memory alloy(SMA) have large failure strain and failure stress and can absorb large strain energies through phase transformation. SMA wires were embedded in composite plates to improve their weak impact resistance. Tensile tests of SMA wires were performed at various temperature to investigate their thermo-mechanical properties. Low-Velocity impact tests of several types of composite plates with SMA/Al/Fe were performed. Embedding SMA wires was most effective to improve impact resistance of composite plates. The effects of SMA position on impact resistance were also investigated.

  • PDF

Effect of thermo-mechanical treatment and annealing atmosphere on fabrication of Ag tapes for YBCO coated conductor (차세대 선재 기판용 Ag 테이프의 제조공정에서 가공 열처리 및 열처리 분위기 변화가 집합조직에 미치는 영향)

  • Lee, N.J.;Oh, S.S.;Park, C.;Song, K.J.;Ha, D.W.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.519-522
    • /
    • 2002
  • Ag (silver) can be used for YBa$_2$Cu$_3$O$\_$7-$\delta$/(YBCO) coated conductor tape as the substrate on which YBCO can be deposited directly because of the chemical compatibility of Ag with YBCO. We have fabricated rolled Ag tapes with various total reduction ratios and different thicknesses. As-rolled Ag tape was recrystallized at 750$^{\circ}C$ for 30min in air and vacuum of 10$\^$-3/ torr. The orientation distribution functions (ODF) calculated from three x-ray pole figures of as-rolled and recrystallized tapes were analysed. As the total reduction ratio increased from 94 to 98%, the development of {110}texture of as-rolled Ag improved. Under the present experimental condition, maximum {110}ODF value of Ag tape was obtained for the sample with 94% total reduction ratio which was recrystallized at 750$^{\circ}C$ for 30min in vacuum of 10$\^$-3/ torr.

  • PDF

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA (다공성 매질에서 액화질소의 거동에 대한 연구)

  • Choi, S.W.;Lee, W.I.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.