• Title/Summary/Keyword: thermo rod

Search Result 19, Processing Time 0.028 seconds

The Applications of the Duplex Stainless Steel as Hyperthermia Materials

  • Kim, Young-Kon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.1-7.1
    • /
    • 2009
  • The use of Duplex stainless steel as a thermo-implant categorizes into two clinical applications: hyperthermia and thermal ablation or destruction. The goal of hyperthermia is to destroy the heat-sensitive abnormal cells and minimize normal cell death maintaining heat between $42^{\circ}C$ and $46^{\circ}C$. Thermal ablation takes place when the local tissue temperature increases greater than $46^{\circ}C$. This elevated temperature denatures protein irreversibly resulting cellular death. The author introduced several thermo-implants such as thermo-rod, thermo-stent, thermo-coil and thermoacupuncture-needle. Those thermo-implants are made of duplex stainless steel which can produce regulated heat by itself within an induction magnetic field. Thermal ablation characteristics of the thermo-rod on tumor hyperthermia depend on configurations of the thermo-rods and the magnitude of the induction magnetic strength. The exothermic properties of the thermo-implants can be characterized using the calorimetric test and the heat affected zone(HAZ) analyses in vitro. Thermal radiation studies using thermo-coils and thermo-stents show the capability of the occlusion of animal blood vessels and inhibiting the proliferation of the abnormal smooth muscle cell growth and inflammatory cell reactions maintaining the heat between $42^{\circ}C$ and $46^{\circ}C$ minimizing a normal cell death in the study on external iliac artery of the New Zealand White (NZW) rabbit. Thermal stimulation study using thermo-acupuncture needles suggests the potential applications of the automated acupunctural therapies.

  • PDF

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.

Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory

  • Ezzat, Magdy A.;Al-Muhiameed, Zeid I.A.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.535-546
    • /
    • 2022
  • The memory response of nonlocal systematical formulation size-dependent coupling of viscoelastic deformation and thermal fields for piezoelectric materials with dual-phase lag heat conduction law is constructed. The method of the matrix exponential, which constitutes the basis of the state-space approach of modern control theory, is applied to the non-dimensional equations. The resulting formulation together with the Laplace transform technique is applied to solve a problem of a semi-infinite piezoelectric rod subjected to a continuous heat flux with constant time rates. The inversion of the Laplace transforms is carried out using a numerical approach. Some comparisons of the impacts of nonlocal parameters and time-delay constants for various forms of kernel functions on thermal spreads and thermo-viscoelastic response are illustrated graphically.

Growth Rate study of CPAE Cells and Osteobalst by Local Hyperthermia Duplex Stainless Steel Thermo-rod (국소온열치료용 듀플렉스 스테인리스 스틸 발열체에 의한 혈관세포와 골세포의 온도에 따른 성장률 변화 관찰)

  • Choi, Sung-Min;Kim, Young-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.247-253
    • /
    • 2009
  • We investigated the cell growth rate according to the change of temperature of the Thermo-rod used for the local hyperthermia therapy. For this study, we fabricated the Thermo-rods (TR) using Duplex Stainless Steels having magnetic properties as well as non magnetic properties. To evaluate cell growth rates up to 15 days, we conducted cell proliferation test using cell counting methods. For the tests, the CAPEs and Osteoblats were seeded on the 6-we11 plates with the induction heated thermo-rods 30 mins a day for 15 days with 2 days interval and without induction heated thermo-rods as control group respectively. We calculated cell growth rates, 6 hours after heating. From the results, in case of CAPEs and Osteobalsts seeded groups, the cell growth rates in all groups increased drastically for 6 days after seeding, but decreased irregularly after 6 days. In conclusion, the cell growth rates showed no significant difference among all groups and it indicated that there were no effects of temperate ($41^{\circ}C$) on cell growth rates.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.

DEVELOPMENT OF THE ENIGMA FUEL PERFORMANCE CODE FOR WHOLE CORE ANALYSIS AND DRY STORAGE ASSESSMENTS

  • Rossiter, Glyn
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.489-498
    • /
    • 2011
  • UK National Nuclear Laboratory's (NNL's) version of the ENIGMA fuel performance code is described, including details of the development history, the system modelled, the key assumptions, the thermo-mechanical solution scheme, and the various incorporated models. The recent development of ENIGMA in the areas of whole core analysis and dry storage applications is then discussed. With respect to the former, the NEXUS code has been developed by NNL to automate whole core fuel performance modelling for an LWR core, using ENIGMA as the underlying fuel performance engine. NEXUS runs on NNL's GEMSTONE high performance computing cluster and utilises 3-D core power distribution data obtained from the output of Studsvik Scandpower's SIMULATE code. With respect to the latter, ENIGMA has been developed such that it can model the thermo-mechanical behaviour of a given LWR fuel rod during irradiation, pond cooling, drying, and dry storage - this involved: (a) incorporating an out-of-pile clad creep model for irradiated Zircaloy-4; (b) including the ability to simulate annealing out of the clad irradiation damage; (c) writing of additional post-irradiation output; (d) several other minor modifications to allow modelling of post-irradiation conditions.

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

THE BENCHMARK CALCULATIONS OF THE GAMMA+ CODE WITH THE HTR-10 SAFETY DEMONSTRATION EXPERIMENTS

  • Jun, Ji-Su;Lim, Hong-Sik;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.307-318
    • /
    • 2009
  • KAERI (Korea Atomic Energy Research Institute) has developed the GAMMA+ code for a thermo-fluid and safety analysis of a VHTR (Very High Temperature Gas-Cooled Reactor). A key safety issue of the VHTR design is to demonstrate its inherent safety features for an automatic reactor power trip and power stabilization during an anticipated transient without scram (ATWS) accident such as a loss of forced cooling by a trip of the helium circulator (LOFC) or a reactivity insertion by a control rod withdrawal (CRW). This paper intends to show the ATWS assessment capability of the GAMMA+ code which can simulate the reactor power response by solving the point-kinetic equations with six-group delayed neutrons, by considering the reactivity changes due to the effects of a core temperature variation, xenon transients, and reactivity insertions. The present benchmark calculations are performed by using the safety demonstration experiments of the 10 MW high temperature gas cooled-test module (HTR-10) in China. The calculation results of the power response transients and the solid core temperature behavior are compared with the experimental data of a LOFC ATWS test and two CRW ATWS tests by using a 1mk-control rod and a 5mk-control rod, respectively. The GAMMA+ code predicts the power response transients very well for the LOFC and CRW ATWS tests in HTR-10.