• 제목/요약/키워드: thermally grown oxide (TGO)

검색결과 21건 처리시간 0.027초

Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석 (Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

열차폐 코팅의 TGO 성장과 형상비에 따른 TC-BC-TGO 계면에서의 잔류응력 변화에 대한 유한요소해석 (Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.415-420
    • /
    • 2006
  • The residual stresses in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloy samples using a Finite Element Method (FEM). It was found that the stress distribution of the interface boundary was dependent upon mainly the geometrical shape or its aspect ratio and the thickness of TGO layer, which was formed by growth and swelling behavior of oxide layer. Maximum compressive residual stress in the TBC/TGO interface is higher than that of the TGO/bond coat interface, and the tensile stress had nothing to do with change of an aspect ratio. The compressive residual stresses in the TBC/TGO and TGO/bond coat interface region increased gradually with the TGO growth.

열 생성 알루미나 박막의 크리프 및 인장 특성 (Creep & Tensile Properties of Thermally Grown Alumina Films)

  • 고경득;선신규;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.665-670
    • /
    • 2007
  • Alpha-phase alumina TGO(Thermally Grown Oxide) forms on the interface between zirconia top coat and bond coat of thermal barrier coating system for superalloys during exposure to high temperature over $1000^{\circ}C$. It is known to provide a good protection against hot corrosion and to cause surface failure such as rumpling and cracking due to difference in thermal expansion coefficient from the substrate metal and the lateral growth. Consequently, mechanical properties of the alumina TGO at the high temperature are the key parameters determining the integrity of TBC system. In this work, by using Fecralloy foils as the alumina forming substrate, creep tests and tensile tests have been performed with various TGO thicknesses$(h=0{\sim}4{\mu}m)$ and yttrium contents(0, 200ppm) at $1200^{\circ}C$. Displacement-time curves and load-displacement curves for each TGO thickness(h=1,2,..) were measured from the creep and tensile tests, respectively, and compared with the curves without TGO thickness(h=0). As the result, the intrinsic tensile and creep properties of TGO itself were determined.

TGO 성장을 고려한 열차폐코팅의 내구성평가 (Durability Evaluation of Thermal Barrier Coating (TBC) According to Growth of Thermally Grown Oxide (TGO))

  • 송현우;문병우;최재구;최원석;송동주;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1431-1434
    • /
    • 2014
  • 가스터빈에 적용되는 열차폐코팅은 가동 중 반복적인 열피로에 의하여 파손되므로, 열차폐코팅의 내구성평가가 필요하다. 고온 환경에 노출된 열차폐코팅의 내부에는 열생성산화물(TGO)이 성장하게 되는데, 이러한 열생성산화물(TGO)의 성장은 열차폐코팅의 주요 파손 원인으로 알려져 있다. 따라서 TGO의 성장을 고려한 열차폐코팅의 내구성평가는 반드시 선행되어야 하는 연구이다. 본 연구에서는 김대진등의 연구 결과로부터 열화시간에 따른 TGO 성장을 고려하여 유한요소해석을 수행하였으며, 이로부터 응력과 열화시간 사이의 관계를 도출하였다. 또한 열화시간에 따른 유한요소해석 결과와 김대진 등의 접착강도 시험 결과의 비교를 통하여 열차폐코팅의 내구성을 평가하였다.

TGO 성장이 열피로 수명에 미치는 영향 평가 (Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth)

  • 송현우;이정민;김용석;오창서;한규철;이영제;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1155-1159
    • /
    • 2014
  • Thermal barrier coating (TBC) which is used to protect the substrate of gas turbine is exposed to high temperature environment. Because of high temperature environment, thermally grown oxide (TGO) is grown at the interface of thermal barrier coating in operation of gas turbine. The growth of TGO critically affects to durability of TBC, so the evaluation about durability of TBC with TGOs of various thickness is needed. In this research, TGO was inserted by aging of TBC specimen to evaluate the effect of the TGO growth. Then thickness of TGO was defined by microstructure analysis, and thermal fatigue test was performed with these aging specimens. Finally, the relation between thermal fatigue life and the TGO growth according to aging time was obtained.

열차폐 코팅에서 열산화물층 억제에 관한 연구 (Thermally Grown Oxide (TGO) Growth Inhibition in a Thermal Barrier Coating)

  • 김현지;김민태;박해웅
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.70-74
    • /
    • 2012
  • In thermal barrier coating (TBC) systems, the life of the coating depends on thermally grown oxide (TGO) layer because most of the failure of TBCs occurs when TGO growth increases. In order to inhibit TGO growth, process was additionally carried out before the heat treatment of the TBC coating layer at $1200^{\circ}C$ in air. In the additional process, heat treatment in vacuum furnace of < $10^{-5}$ torr was conducted for 7 h and 14 h before the heat treatment. The area and length of TGO, as well as the crack length in the TBC were characterized using a scanning electron microscope (SEM). The TGO thickness and crack of specimens pre-heat treated in vacuum furnace were reduced by 45% compare to those heat treated in furnace. Consequently, pre-heat treatment in a vacuum furnace process lead to effective inhibition of growth of the TGO.

고온생성 산화막의 열피로에 의한 변형 (Deformation of Thermally Grown Oxide Due to Thermal Cycling)

  • 이상신;선신규;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.415-419
    • /
    • 2004
  • Thermal barrier systems are susceptible to instability of the thermally grown oxide(TGO) at the interface between the bond coat(BC) and the thermal barrier coating(TBC). The instabilities have been linked to thermal cycling and initial geometrical imperfections, as well as to misfit strains due to oxide growth and expansion misfit. In this work, deformation of TGO near a surface groove due to thermal cycling has been observed at high temperatures, $1100^{circ}C$, $1150^{circ}C$, $1200^{circ}C$. The effect of peak temperature and the thickness of substrate are presented.

  • PDF

사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동 (Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade)

  • 최병학;한성희;김대현;안종기;이재현;최광수
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.

대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가 (Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray)

  • 이한상;김의현;이정혁
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.