• 제목/요약/키워드: thermal transient response

검색결과 81건 처리시간 0.023초

Non-linear fire-resistance analysis of reinforced concrete beams

  • Bratina, Sebastjan;Planinc, Igor;Saje, Miran;Turk, Goran
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.695-712
    • /
    • 2003
  • The non-linear structural analysis of reinforced concrete beams in fire consists of three separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (ii) the determination of the distribution of the temperature within the beam during fire; (iii) the evaluation of the mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (ii) and (iii) are dealt with in the present paper. We present a two-step computational procedure where a 2D transient thermal analysis over the cross-sections of beams are made first, followed by mechanical analysis of the structure. Fundamental to the accuracy of the mechanical analysis is a new planar beam finite element. The effects of plasticity in concrete, and plasticity and viscous creep in steel are taken into consideration. The properties of concrete and steel along with the values of their thermal and mechanical parameters are taken according to the European standard ENV 1992-1-2 (1995). The comparison of our numerical and full-scale experimental results shows that the proposed mechanical and 2D thermal computational procedure is capable to describe the actual response of reinforced concrete beam structures to fire.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Transient Response of a Stratified Thermal Storage Tank to the Variation of Inlet Temperature

  • Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.14-26
    • /
    • 1998
  • This paper deals with approximate analytical solutions for the two-region one-dimensional model describing the charging process of stratified thermal storage tanks at variable inlet temperature with momentum-induced mixing. An arbitrarily increasing inlet temperature is decomposed into inherent step changes and intervals of continuous change. Each continuous interval is approximated as a finite number of piecewise linear functions, which admits an analytical solution for perfectly mixed region. Using the Laplace transform, the temperature profiles in plug flow region with both the semi-infinite and adiabatic ends are successfully derived in terms of well-defined functions. The effect of end condition on the solution proves to be negligible under the practical operating conditions. For a Quadratic variation of inlet temperature, the approximate solution employing a moderate number of pieces agrees excellently with the exact solution.

  • PDF

열환경 챔버 제어를 위한 PID 튜닝기법 연구 (A Study on PID Tuning Technique of a Thermal Environment Chamber)

  • 신영기;양훈철;태춘섭;장철용;조수;김영일
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1072-1078
    • /
    • 2005
  • The present study has been conducted to tune a PID controller for large thermal systems such as a thermal environment chamber. In spite of large thermal mass of the thermal chamber under test, its response delay time was found to be negligible mainly due to high air recirculation rate. In general, heating and cooling capacities tend to be small compared the size of a thermal environment chamber, which leads to long transient periods of one hour or so. In the study, a PI tuning method is suggested which makes system responses faster while reducing overshoots and hunting by utilizing efficiently proportional band of actuators.

태양열 공기가열기의 흡열판 홀 배치와 형상에 따른 열적 성능에 관한 수치해석적 연구 (A Numerical Study on the Thermal Performance of a Solar Air Heater Depending on the Hole Configuration and Geometry in the Absorber Plate)

  • 신재혁;부준홍
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.69-80
    • /
    • 2015
  • A series of numerical analyses was conducted to predict the thermal performance of a solar air heater depending on the hole configuration and geometry in the absorber plate. The planar dimensions of the prototype were 1 m (W) by 1.6 m (H), and the maximum air flow considered was $187m^3/h$. It was considered that protruding holes with a triangular opening in the absorber plate would invoke turbulence in the air flow to enhance the convection heat transfer. Six different hole configurations were investigated and compared with each other, while the hole opening height was considered as a design variable. Three-dimensional transient analyses were performed with a commercial software package on the airflow and heat transfer in the model. The numerical results were analyzed and compared from the view point of the outlet air temperature and its time response to derive the optimal hole pattern and hole opening height.

디젤기관에서 산화촉매장치에 의한 배기가스 저감에 관한 이론적 연구 (A Theoretical Study on Exhaust Gas Reduction by Oxidation Catalyst in Diesel Engine)

  • 한영출;김종춘;김태섭
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.179-189
    • /
    • 1997
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now studied actively. In this study, a transient one-dimensional model developed to simulate the thermal and conversion characteristics of adiabatic monolithic converters operating under warm up conditions is presented. This model takes into account the gas solid heat and mass transfer, axial heat conduction, chemical reactions and the related heat release. The model has been used to analyze the transient response of an axisymmetric catalytic converter during a warm-up as a function of catalyst design parameters and operation conditions in order to observe their effects on the lightoff behaviour. The experimental test was carried out 2400 cc light diesel engine with DOC.

  • PDF

유동형 미세 열유속 센서의 설계 (Design of The Micro Fluidic Heat Flux Sensor)

  • 김정균;조성천;이선규
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.138-145
    • /
    • 2009
  • A suspended membrane micro fluidic heat flux sensor that is able to measure the heat flow rate was designed and fabricated by a complementary-metal-oxide-semiconductor-compatible process. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, low pass filter, and lock-in amp has enabled the resolution of 50 nW power and provides the sensitivity of $11.4\;mV/{\mu}W$. The heater modulation method was used to eliminate low frequency noises from sensor output. It is measured with various heat flux fluid of DI-water to test as micro fluidic application. In order to estimate the heat generation of samples from the output measurement of a micro fluidic heat-flux sensor, a methodology for modeling and simulating electro-thermal behavior in the micro fluidic heat-flux sensor with integrated electronic circuit is presented and validated. The electro-thermal model was constructed by using system dynamics, particularly the bond graph. The electro-thermal system model in which the thermal and the electrical domain are coupled expresses the heat generation of samples converts thermal input to electrical output. The proposed electro-thermal system model shows good agreement with measured output voltage response in transient state and steady-state.

열 유동해석을 통한 무선충전기 발열 성능 향상에 관한 연구 (A Study on the Thermal Flow Analysis for Heat Performance Improvement of a Wireless Power Charger)

  • 김평준;박동규
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.310-316
    • /
    • 2019
  • 자동차 편의 장치에 대하여 고객들은 높은 효율과 많은 기능을 요구하고 있으며, 이러한 자동차 어플리케이션에 대한 수요가 지속적으로 증가하고 있다. 본 연구에서는 최근 자동차 편의 사양으로 개발된 무선충전기의 PCB(printed circuit board) 발열 성능 향상을 위한 열 유동해석에 관한 연구를 진행하였다. 무선충전기는 PCB의 전력 손실 및 열 저항의 특성 발열에 따라 충전의 성능이 급격히 저하된다. 따라서 열 유동해석 시뮬레이션을 통해 최적의 PCB 설계 및 부품의 실장 위치를 제안하고, 각 설계 단계에서 해석을 통해 디자인을 결정한다. 이후, 실제 환경 조건에서 해석결과 정합성 검증을 위해 시험을 수행하고 결과를 비교 분석한다. 본 논문에서는 HyperLynx Thermal와 FloTHERM 프로그램을 사용하여 PCB 모델링 및 과도 응답 열 유동해석을 수행하였다. 또한, 해석 및 측정 결과의 정합성 검증을 위해 적외선 열화상 카메라를 사용하여 시험을 진행하였다. 최종 결과 비교에서 해석과 시험의 오차는 10 % 이내로 확인되었고, PCB의 발열 성능도 향상되었다.