• Title/Summary/Keyword: thermal stresses

Search Result 832, Processing Time 0.03 seconds

Repair Method of Concrete Structures Using Anchors (앵커를 이용한 콘크리트 구조물의 단면보수 공법)

  • Song, Hyung-Soo;Lee, Chin-Yong;Yoon, Dong-Yong,;Choi, Dong-Uk;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.267-270
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

  • PDF

Hygrothermal effects on the vibration and stability of an initially stressed laminated plate

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1041-1061
    • /
    • 2015
  • The influence of hygrothermal effects on the vibration frequency and buckling load of a shear deformable composite plate with arbitrary initial stresses was investigated. The governing equations of the effects of humid, thermal and initial stresses are established using the variational method. The material properties of the composite plate are affected by both temperature and moisture. The initial stress is taken to be a combination of uniaxial load and pure bending in a hygrothermal environment. The influence of various parameters, such as the fiber volume fraction, temperature, moisture concentration, length/thickness ratios, initial stresses and bending stress ratio on the vibration and stability of the response of a laminated plate are studied in detail. The behavior of vibration and stability are sensitive to temperature, moisture concentration, fiber volume fraction and initial stresses.

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite- (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태-)

  • Kim, O.S.;Song, G.H.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

Analysis of Radiative Heat Transfer and Thermal Stress in Flaring System of FPSO (FPSO 소각탑의 복사열전달 및 열응력 해석에 관한 연구)

  • Jang-Hyun Lee;Jong-Gye Shin;In-Sik Nho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.61-72
    • /
    • 2002
  • The flaring system of FPSO burns out the byproduct natural gas. The thermal loading due to radiative heat of flaring gas leads to undesirable thermal-stresses on itself. Nowadays it needs to understand the amount of thermal loading of flaring system since the requirement for the safety of the flaring system. However, few studies have been performed on the thermal environment and radiative heat flux on the FPSO flaring system. Present study suggests a procedure to model the thermal environment and a FEA process to analyze the temperature distribution and thermal stresses of FPSO flaring system. In order to get the temperature distribution, the radiative heat conditions and convective heat conditions are included in the heat transfer analysis. By making the use of temperature obtained through heat transfer analysis, the thermal stress analyses are performed. The results of the present study can be used to design the flaring system and determine the heat shield in the flaring system.

Top Coating Design Technique for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅 설계기술)

  • Koo, Jae-Mean;Lee, Si-Young;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.802-808
    • /
    • 2013
  • Thermal barrier coating (TBC) is used to protect substrates and extend the operating life of gas turbines in power plant and aeronautical applications. The major causes of failure of such coatings is spallation, which results from thermal stress due to a thermal expansion coefficient mismatch between the top coating and the bond coating layers. In this paper, the effects of the material properties and the thickness of the top coating layer on thermal stresses were evaluated using the finite element method and the equation for the thermal expansion coefficient mismatch stress. In addition, we investigated a design technique for the top coating whereby thermal resistance is exploited.

On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting (정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구)

  • Kim, Chae-Hwan;Mun, Su-Dong;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

A Study on the Mechanical Properties and Residual Stresses of the Thermally Sprayed Alumina Ceramic Coating Layer (알루미나 세라믹(Alumina Ceramic) 코팅층의 기술적인 특성과 잔류응력의 해소에 관한 연구)

  • 김영식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.88-97
    • /
    • 1996
  • The pupose of this study is to improve the mechanical properies and to evaluate the residual stresses of flame-sprayed Alumina ceramic coating layer. The first work in this study is to investigate the effects of strengthening heat treatments on the mechanical properties of coating layer. Strengthening heat treatments for sprayed specimens were carried out in vaccum furnace. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening heat treatments. And it was clear that the mechanical properties of coating layer were much improved by strengthening heat treatments. The second work in this study is to evalute the residual stresses in coating lsyer by numerical analysis. FDM and FEM were used to analyze temperature distribution and residul stresses in coating layer. It was proved that are tensile stresses in coating layer and that residual stresses can be controlled by the appropriate selection of the spraying parameters such as preheat temperature, coating thickness and bond coat thickness.

  • PDF

Effect of Interlayer Materials on Bending Strength and Reliability of Si$_3$N$_4$/S. S316 Joint (Si$_3$N$_4$/S. S316 접합에서 중간재가 접합강도 및 신회도에 미치는 영향)

  • 윤호욱;박상환;최성민;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.219-230
    • /
    • 1998
  • Various interlayer materials have been tested for active metal(Cusil ABA) brazing of Si3N4/S. S316 joint. In general multilayer joint had higher strength(80-150 MPa) and better reliability than monolayered one. The joint with Cu(0.2)/Mo(0.3)/Cu(0.2mm) interlayer showed the highest bending strength of abou 490 MPa and the joint with Cu(0.2)/Mo(0.3mm) interlayer the best reliability (14.6 Weibull modulus). The stresses distributed in joint materials during 4-point bending test were estimated by CAE von Mises analysis; the estimated stresses were In good agreement with the measured data. In multilayer joint Cu was though to reduce the residual stresses induced by the difference in thermal expansion coefficient between the ceramic Mo and metal It apperared that a Cu/Mo was optimum interlayer material for Si3N4/S. S316 joint with high bending strength (420 MPa) and reliability. In addition the various shapes and types of compound were examined by EPMA in joining interface.

  • PDF

Numerical Analysis and Experimental Verification of Relaxation and Redistribution of Welding Residual Stresses (용접잔류응력의 이완과 재분포 해석 및 실험적 검증)

  • Song, Ha-Cheol;Jo, Young-Chun;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • For the precise assessment of the effect of welding residual stresses on structural strength and fatigue crack growth behavior, new FE analysis algorithms for the estimation of residual stress relaxation due to external load and redistribution due to fatigue crack propagation were proposed in this paper. Initial welding residual stress field was obtained by thermal elasto-plastic analysis considering temperature dependent material properties, and the amount of residual stress relaxation and redistribution were assessed by subsequent elasto-plastic analysis In the analysis of fatigue crack propagation, the applied SIF(Stress Intensity Factor) range was evaluated by $\frac{1}{4}$-point displacement extrapolation method, and the effect of welding residual stresses on crack propagation was considered by introducing the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.