• Title/Summary/Keyword: thermal storage system

Search Result 649, Processing Time 0.032 seconds

Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System (BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules (스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구)

  • Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Study on Heat Storage and Transportation System for Recovering Non-using Low-temperature Heat (폐열회수 증대를 위한 열운송 축열 시스템 특성 연구)

  • Oh, Changyong;Im, Hongseop;Kim, Insu
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Non-used waste heat has recently been paid special attention due to several global warming regulation and energy cost rising. In this study, therefore, thermal energy storage system which uses a solid type heat media has been investigated about the possibility of heat accumulation and heat release for thermal energy storage system. 35kWh of bench-scale thermal storage system was used to investigate the characteristics of the solid type heat media. From the result, it is shown that a solid type heat media should be divided to supply constant heat to the customers' side. It is also shown the flow direction should be considered to reduce temperature difference between top and bottom sides in the thermal storage system.

A Basic Study for Improvement of Performance of Ice Thermal Storage in Ice Storage Tank (빙축열조 성능향상에 관한 연구)

  • Park, J.W.;Lee, W.S.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual air-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. In the influence of the inlet port type, the inflowing water in the distributor type diffuses through the whole storage tank more than in the slot type. In case of the flow process in the ice storage tank, the upward flow type in the charging process and the downward flow type in the discharging process make the stratification well, thereby the loss of energy wored be smaller. The influence of the inlet temperature difference and the change of the inlet flow rate is intensive when the temperature difference is larger, the flow rate is smaller in case of charging and the results are opposite in case of discharging with the reason that the good coduction condition. The total effeciency of the ice thermal storge system is 73% on condition that the porosity in the thermal storage tank is 0.55. This result shows that cylinderical ice storage tank has better storage capacity than rectangular type in case of the same porosity.

  • PDF

Fanless Thermal Design for the Information Storage System Using CAE Technique (CAE 기법을 이용한 정보저장시스템의 Fanless 열설계)

  • Ryu Ho Chul;Dan Byung Ju;Choi In Ho;Kim Jin Yong
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.246-247
    • /
    • 2005
  • This study suggested fanless thermal design using CAE technique for the information storage system under the serious thermal problem. At first, main heat flow was controlled by CAE based fanless heat sink design not to influence sensitive optical pick-up sensor. Then, vent parametric studies found a thermal solution about highly concentrated case top heat due to fanless. These CAE results were verified by experimental methods. As a consequence of newly designed thermal path, thermal specification of optical pick-up sensor was satisfied and fanless thermal design for the information storage system was achieved.

  • PDF

An Experimental Study on Thermal Storage Performance of an Air Conditioning System with Slab Thermal Storage (슬래브축열 공조시스템의 축열성능에 관한 실험적 연구)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • This paper investigates the thermal storage performance of the office building which has adopted an air conditioning system with its slab structure as a regenerator. Four cases of the thermal storage performance experiment were conducted. Room air temperatures, floor slab temperatures, temperatures around the air conditioning unit were logged and analyzed. The load handling capacity of the air conditioning unit and the amount of heat stored in the slab were decided from those experiments. Several efficiencies were investigated to evaluate the performance of the thermal storage. The results concluded that the slab as a regenerator is very effective in cutting down peak loads of the office building.

Consideration of Appropriate Thermal Storage Time of Air-Conditioning System with Slab Thermal Storage in an Office Building by Use of Measurement Value (실측치를 통한 사무소건물 슬래브축열 공조시스템의 적정 축열시간 검토)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.719-726
    • /
    • 2010
  • In this paper, the appropriate thermal storage time of an air-conditioning system with slab thermal storage was considered by use of summer measurement values. Two standards of heat extraction rate and criterion function were established as the standard that evaluates appropriateness. When heat extraction rate was a standard, zero hour and seven hours were obtained as appropriate thermal storage time, in the case of evaluation by energy consumption and running cost individually. Also, when criterion function was a standard, the difference between energy consumption and running cost was small, it was because the weight function to room air temperature deviation was much bigger than heat extraction rate.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.

Study on the Characteristics of Thermal Output and Thermal Storage in a Thermally Activated Building System with Phase Change Material (PCM을 활용한 구체축열시스템의 축열 및 방열 특성 연구)

  • Lee, Hyunhwa;Lee, Soojin;Song, Jinhee;Kim, Sumin;Lim, Jaehan;Song, Seung-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.647-653
    • /
    • 2013
  • TABS (Thermally Activated Building System) has recently applied by huge commercial buildings, airports, and convention centers in Europe. TABS provides night-time thermal storage by heating or cooling. The embedded water-based heating and cooling system uses the high thermal inertia of concrete in the building construction, in which a heating or cooling pipe is embedded. The aim of this study is to analyze the thermal storage and thermal output of TABS applied with PCM (Phase Change Material). To achieve this, prototypes of TABS and the thermal properties of various PCMs were investigated. By using the simulation program Physibel Voltra 6.0 W, the thermal storage and thermal output were evaluated according to a heating and cooling operation schedule.

Experiment on the Charge and Discharge of Thermal Energy for Under-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열시스템의 축방냉 특성 실험)

  • Kim, J.D.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • This paper is concerned with the development of a new method for making, separating ice and storage floated ice by installing an evaporation plate at under-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating an ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. Developed new harvest-type method shows good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, however these components are not necessary in a new method. In this study ice storage systems are experimentally investigated to study the charge and discharge of thermal energy. The results show the applicable possibility and performance enhancement of a new type.