• 제목/요약/키워드: thermal shock resistance

검색결과 173건 처리시간 0.024초

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

$Al_2O_3-ZrO_2$ 복합체의 강도 및 열충격 저항의 향상에 관한 연구 (The Study on the Improvement of the Strength and the Thermal Shock Resistance of $Al_2O_3-ZrO_2$ Composites)

  • 황규홍;배원태;최명덕;오기동;김경운;김환
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.225-230
    • /
    • 1988
  • $Y_2O_3$$thickapprox$1mol.% 고용된 정방정 지르코니아를 알루미나에 20vol.% 섞어 체조립에 의해 과립으로 만든 다음 여기에 알루미나에 단사정 지르코니아를 10 ~30 vol.%섞어 만든 과립을 15~30vol.%가 되도록 과립형태로 분산시켜 성형 및 소결함으로써 단사정 및 정방정 지르코니아의 분산영역이 서로 다른 불균질 조직의 $Al_2O_3-ZrO_2$복합체를 제조하여 강도 및 열충격 거동을 관찰하였다. 이러한 불균질 조직의 $Al_2O_3-ZrO_2$ 복합체는 분산 agglomerate 내의 낮은 소결밀도에 의한 기공의 존재, 단사정상에 의한 미세균열, 또 이에 따른 주위에의 압축응력 등이 복합적으로 작용하여 향상된 열충격 거동을 보여 주었다.

  • PDF

OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명 (Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish)

  • 오철민;박노창;홍원식
    • 대한금속재료학회지
    • /
    • 제46권2호
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

SiC 질 공업용 도자기 개발에 관한 연구 (Study on the Development of SiC-containing Technical Porecelain Body)

  • 박정현;배원태;권오훈
    • 한국세라믹학회지
    • /
    • 제19권1호
    • /
    • pp.5-12
    • /
    • 1982
  • SiC-containing by-product from the surface abrasion process of porcelain cores is used as a starting material to develop the SiC-containing technical porcelain bodies. To prevent the bloating phenomenon of by-product specimen at firing temperature, it is acid treated. In order to enhance the workability and to lower the firing temperature of bodies, clay is added. Body containing 25% clay and 75% by-product fired at 135$0^{\circ}C$ showes extremely high thermal shock resistance and acid resistance.

  • PDF

실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (II) Sillimanite, Kaolin 및 Pyrophyllite족 광물을 이용한 Spodumene 분말합성 (The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (II) Preparation of Spodumene Powders with Sillimanite, Kaolin and Pyrophyllite Group Minerals)

  • 박한수;조경식;문종수
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.784-794
    • /
    • 1994
  • Though spodumene have a law theraml expension and good thermal shock resistance, its sintering temperature is too close to its melting point in the application for industral purpose. Solving the problems, impurities within the silicate minerals act as a frit during firing, so its densification is expected through enlargement of sintering temperature range. By the heat treatment of starting materials, mixtures of silicate mineral, lithium carbonate, if necessary SiO2 or Al2O3 were added for stoichiometric correction, in the range of 1000~125$0^{\circ}C$ for 10 hrs, $\beta$-spodumene single phase was synthesized. Mixtures with sillimanite group minerals, $\beta$-spodumene was formed at 120$0^{\circ}C$ or 125$0^{\circ}C$ via intermediate phases of petalite, Li2SiO3 and LiAlO2. For the case of kaolin group minerals, synthesis were completed at 110$0^{\circ}C$ for Hadon pink kaolin, 120$0^{\circ}C$ for New Zealand white kaolin, When pyrophyllite group minerals were used, those were at the range of 1000~125$0^{\circ}C$. Spodumene was completed at lowest temperature, 100$0^{\circ}C$ from the mixture of Wando pyrophyllite among them. Microstructure of synthesized powders showed the inrregular lump shape such as densed crystallines.

  • PDF

냉간압연용 장수명 중간롤 개발 (Development of intermediate roll which has a long life for cold rolling mills)

  • 박영철;김병훈;김일봉;김정태;김현문;이우동
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.207-215
    • /
    • 2004
  • There are various characteristics called for in work roll and intermediate rolls for cold rolling mills. Among these characteristics, the two main requirements are to ensure the quality of the rolled products and to reduce roll cost. To achieve these needs, resistance to wear, to thermal shock and to contact fatigue are especially important. This paper describes that new material(named DSR1) for intermediate rolls which greatly increases rolling campaign and improves resistance to wear has been developed. DSR1 was successfully manufactured and has been used in the cold rolling mill. It showed that Trial product was homogenous in hardness distribution and sufficient usable diameter. Also in service test, trial product is much more excellent rolling performance than conventional $5\%Cr$.

  • PDF

무은 솔더의 신뢰성 평가에 관한 연구 (A Study on Reliability Assessment of Ag-free Solder)

  • 김종민;김기영;김강동;김선진;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.109-116
    • /
    • 2013
  • The solder is any of various fusible alloys, usually tin and lead, used to join metallic parts that provide the contact between the chip package and the printed circuit board. Solder plays an important role of electrical signals to communicate between the two components. In this study, two kinds of Ag-free solder as sample is made to conduct the thermal shock test and the high humidity temperature test. Low resistance is measured to estimate crack size of solder, using daisy chain. The low speed shear test is also performed to analyze strength of solder. The appropriate degradation model is estimated using the result data. Depending on the composition of solder, lifetime estimation is conducted by adopted degradation model. The lifetime estimated two kinds of Ag-free solder is compared with expected lifetime of Sn-Ag-Cu solder. The result is that both Ag-free composition are more reliable than Sn-Ag-Cu solder.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

알루미늄 용사코팅의 불소실리콘 봉공재 적용에 따른 전기화학적 및 캐비테이션 특성 평가 (Electrochemical and Cavitation Characteristics of Al Thermal Spray Coating with F-Si Sealing)

  • 한민수;이승준;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.317-324
    • /
    • 2010
  • Marine transportation by ships is characterized by remote, large-volume and lower rates than the others carry system. Ships account for over 80% of all international trading, and marine transportation is an internationally competitive, strategic, and great national important industry. The construction of larger and faster ships has brought about many problems such as cavitations and erosion corrosion. Cavitations and erosion corrosion make damages on materials and leads to break down members due to continuous physical contacts with shock waves and fluids from the generation and extinction of air bubbles in sea water vortex. The steel used for ship constructions was spray-coated with Al wire, and additionally sealed with fluorine silicone sealing material. Results of experiment, corrosion resistance of sealed thermal spray coating was improved, however in cavitation resistance, the large effect was not appeared. Accordingly, this study applied for thermal spray coating to provide better electrochemical characteristics and corrosion resistance in marine environment.