• 제목/요약/키워드: thermal moment

검색결과 120건 처리시간 0.027초

국내의 태양열발전 기술개발 동향 및 설계 (Design and Development Trends of Solar Thermal Power Generation in Korea)

  • 강용혁;김진수;김종규;이상남;유창균;윤환기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.658-661
    • /
    • 2007
  • KIER have been developing high-temperature solar technology, especially the solar thermal power generation system, since the early of 1990s. In 1994, the first research on high temperature solar technology started with PTC technology. At the moment the most advanced 10kW dish system is under demonstration for 10kW solar thermal power generation. Test results showed about 19.2% solar to electricity average efficiency. Another research activities of KIER is hybrid power generation. For hybridization, solar and LFG(landfill gas) are used. Another hybrid solar system is with solar chemical reaction. In this system, power unit is gas turbine, and the heat content of fuel(like natual gas) is upgraded by solar energy through chemical reaction. The latest project on solar thermal power generation is for 1 MW power tower system. This is the Korea-China Joint project.

  • PDF

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

위성 구성품의 3차원 최적 배치 설계 (3D Optimal Layout Design of Satellite Equipment)

  • 염승용;김홍래;장영근
    • 한국항공우주학회지
    • /
    • 제43권10호
    • /
    • pp.875-887
    • /
    • 2015
  • 최적 배치 설계는 다양한 산업분야에서 활용되고 있다. 우주분야인 위성 플랫폼에서도 제한된 공간 내에서 기계적, 열적, 전기적 인터페이스를 고려한 구성품 배치가 가능하도록 최적 배치 설계가 요구된다. 최적 배치 설계를 통해 합리적인 수준에서 최소화된 위성 플랫폼의 관성모멘트는 위성의 효율적인 자세제어 및 신속한 기동을 가능하게 하며, 위성의 임무성능을 향상시키는데 도움을 준다. 이를 위해 본 논문에서는 육면체 구조의 위성 플랫폼을 기반으로 내부 구성품들이 서로 간섭이 없는 상태에서 위성의 관성모멘트와 구성품 간 발열로 인한 영향을 최소로 하는 3D 최적 배치 설계를 제안한다. 본 연구에서는 3D 최적 배치 설계를 위해 새로운 유전 알고리즘을 제안한다.

삼연모먼트정리의 매트릭스산법에 의한 박용추진축계 배치계산에 관한 연구 (A Study on the Propulsion Shaft Alignment Calculation by the Matrix Method of Three-Moment Theory)

  • 문덕홍;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.20-27
    • /
    • 1981
  • The alignment of propulsion shaft systems by the fair curve method has been developed over the past twenty years and in recent years its basic problems have been almost solved. At the present time, studies on introducing actual conditions are being undertaken. In a fair curve alignment, its aim is to achieve a stable shaft system which will be relatively insensitive to misalignment or the influence of external factors such as thermal variations due to the sunshine, speed change, etc. The key point of fair curve alignment is the calculations of reactions in the straight support and reaction influence numbers. The present authors have developed those calculating method by the matrix method of the three-moment theorem. The fair curve alignment is based on the analysis of propulsion shaft system which is assumed as a continous beam on multiple support points. The propeller shaft is divided into several elements. For each element, the nodal point equation is derived by the three-moment theorem. Reaction of supporting points of straight shaft and reaction influence numbers are calculated by the matrix calculation of each nodal point equation. It has been found that results of calculation for the model shaft agree well with those of experiment which had been measured by the strain gauge method. Results of calculation for the actual propulsion shafting of the steam turbine had been compared also with those of Det norske Vertas.

  • PDF

정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사 (First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows)

  • 이은주;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

창문 열관류율 저감을 위한 열교 저감형 보강재 연구 (A Study on the Thermal Bridge Reduced Stiffeners for the Reduction of Window Overall Hear Transfer Coefficient)

  • 장혁수;김영일;정광섭
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.71-80
    • /
    • 2015
  • PVC 프레임의 취약한 강도를 보완하기 위해 사용되는 철재 보강재는 상대적으로 높은 열전도 특성으로 인해 PVC 프레임의 전체적인 열 성능을 떨어뜨리는 역할을 한다. 본 연구는 철재 보강재의 타공을 통해 표면적을 줄임으로서 전열 면적의 감소를 통한 열저항 특성을 개선하고, 감소된 만큼 두께를 높임으로서 타공으로 인한 강도 저하를 보완하였다. 이에 대한 성능을 평가하기 위해 PVC frame, PVC frame + original steel stiffener, PVC frame + 30% perforated steel stiffener, PVC frame + 50% perforated steel stiffener, PVC frame + 65% perforated steel stiffener 등 5개의 시험체를 구성하였으며, 시험 방법은 수식과 시뮬레이션에 의한 방법을 적용하였다. 시험 결과 PVC frame + 65% perforated steel stiffener이 열저항 특성과 강도특성에서 가장 높은 것으로 평가되었다.

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

평면연삭에서 다변수 입력에 의한 형상오차 해석 (The Geometric Error Analysis by Various Various Inputs In Surface Grinding)

  • 김강석;홍순익;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF