• Title/Summary/Keyword: thermal life data

Search Result 185, Processing Time 0.023 seconds

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Study on Physical Properties of Domestic Species I: Sorption, Thermal, Electrical and Acoustic Properties of Pinus Densiflora (국산재의 응용물성연구 I: 소나무(Pinus densiflora)의 수분흡착성 및 열적·전기적·음향적 성질)

  • Kang, Ho-Yang;Byeon, Hee-Seop;Lee, Won-Hee;Park, Byung-Soo;Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.70-84
    • /
    • 2008
  • A series of the studies on the applied physical properties of domestic species have been conducted last three years. Pinus densiflora was one of the three species examined for the first year. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMC's and sorption isotherms at various heating conditions. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences of the thermal and electric properties between quarter- and flat-sawn specimens were observed, which was partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and nondestructive testing wood.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

A Study on the Thermal Load Patterns for a Exterior Wall in a House According to a Variation of Earth Sheltering Thickness (복토 주택의 외벽면 복토 두께 변화에 따른 열부하 패턴에 관한 연구)

  • Lee, Jae-Hyuk;Choi, Won-Ki;Suh, Seung-Jik;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.807-812
    • /
    • 2008
  • The various attempts is made to solve the energy and environment problems. In addition, people interested in their life quality want the more eco-friendly living space. So we suggested that the earth-sheltered house could be one of the eco-friendly and low energy consuming houses to meet the social interest. And we also made data for design of the earth-sheltered house to be applicable to climate of Korea. In this study, a simulation was performed to estimate a boundary temperature according to earth sheltering thickness at the earth-sheltered part(exterior wall) in the case of earth sheltering on the plane ground not using a sloped site. And we analyzed the reduction of a thermal load by using this boundary temperature. We also compared a case of earth sheltering at the vertical wall with a case of earth sheltering at the roof to know the thermal reduction effect of a case of earth sheltering at the vertical wall.

  • PDF

Numerical Simulation of the Thermal Environment inside an Opened Tomb (개방된 고분내부의 열 환경 수치모사)

  • Lee, Kum-Bae;Youn, Young-Muk;Jun, Hee-Ho;Park, Jin-Yang;Ko, Seok-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.872-878
    • /
    • 2006
  • In recent years the importance of the preservation of cultural artefacts like ancient tombs has been widely accepted domestically and internationally as the quality of life improves. However not much technical attention has been paid for the facilities and systems to preserve those artefacts. Even the general understanding of the preservatory environment of the underground space as tombs is poor. As a part of the present study, the temperature and relative humidity inside a selected artefact, Shinkwan-ri tomb, have been monitored for a year round by the present author to improve the understanding of the indoor thermal environment, is pursued to provide a predictive tool of numerical modelling of Shinkwan-ri tomb the opened underground space thermal environment. In this study, predictive numerical modelling of Shinkwan-ri tomb using the Computational Fluid Dynamics, calculate the velocity and temperature distribution and offer basic data which are necessary for the best fitted design of tomb air-conditioning device.

  • PDF

Predicting Cherry Flowering Date Using a Plant Phonology Model (생물계절모형을 이용한 벚꽃 개화일 예측)

  • Jung J. E.;Kwon E. Y.;Chung U. R.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • An accurate prediction of blooming date is crucial for many authorities to schedule and organize successful spring flower festivals in Korea. The Korea Meteorological Administration (KMA) has been using regression models combined with a subjective correction by forecasters to issue blooming date forecasts for major cities. Using mean monthly temperature data for February (observed) and March (predicted), they issue blooming date forecasts in late February to early March each year. The method has been proved accurate enough for the purpose of scheduling spring festivals in the relevant cities, but cannot be used in areas where no official climate and phenology data are available. We suggest a thermal time-based two-step phenological model for predicting the blooming dates of spring flowers, which can be applied to any geographic location regardless of data availability. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units until a pre-determined chilling requirement for rest release. After the projected rest release date, it accumulates daily heat units (growing degree days) until a pre- determined heating requirement for flowering. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree (Prunus serrulata var. spontanea) at KMA Seoul station along with daily temperature data for 1923-1950. The model was applied to the 1955-2004 daily temperature data to estimate the cherry blooming dates and the deviations from the observed dates were compared with those predicted by the KMA method. Our model performed better than the KMA method in predicting the cherry blooming dates during the last 50 years (MAE = 2.31 vs. 1.58, RMSE = 2.96 vs. 2.09), showing a strong feasibility of operational application.

Development and Sensitivity Analysis of Life Estimation Program for Turbine Rotors (터빈로터 수명예측 프로그램의 개발 및 민감도 분석)

  • Park, Jae-Sil;Seok, Chang-Sung;Suh, Myung-Won;Hong, Kyung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2654-2663
    • /
    • 2000
  • Steam turbine rotors are the most critical and highly stressed components of a steam power plant; therefore, the life expectancy of the turbine rotor is an important consideration for the safety of a steam power plant. The objective of this paper is to develop a life estimation program for turbine rotors for all possible operating conditions. For this purpose, finite element analysis was carried out for four normal operating modes (cold, warm, hot and very hot starts) using ABAQUS codes. The results are made into databases to evaluate the life expenditure for an actual operating condition. For any other possible abnormal operating condition, the operating data are transmitted to the server (workstation) through a network to carry out finite element analysis. Damage estimation is carried out by transmitting the finite element analysis results to the personal computer, and then the life expectancy is calculated.

Creep Behaviour of Al-Zn-Mg Ternary Aluminum Alloy (Al-Zn-Mg 3원계 알루미늄 합금의 크리프 거동)

  • 윤종호;황경충
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.203-208
    • /
    • 2004
  • To make practical applications of Al-Zn-Mg ternary aluminum alloy effectively in various field, a series of static creep tests under the 16 temperature-stress combination conditions had been performed. The creep tester with constant stress loading was designed and made by the authors and used in this study. The higher the creep temperature rose, the less the stress exponents became. The bigger the applied stresses became, the less values the creep strain activation energy showed. The life prediction constant of Larson-Miller parameter was calculated as about 2.3. In the fractography, the ductile fracture with dimples by intergranular breakage was primarily observed. We can make practical use of these test data in the design, the life prediction and the prevention of the accidents of the thermal facilities, etc.