• Title/Summary/Keyword: thermal impact

Search Result 794, Processing Time 0.025 seconds

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Improvement Plan of Ocean Physics Assessment Technique for Power Plant Thermal Effluent (발전소 온배수에 의한 해양물리학적 평가기법 개선방안 연구)

  • Kim, Myeong-Won;Jo, Gwang-Woo;Maeng, Jun-Ho;Kang, Tae-Soon;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • This research analyzed the current situation and problems with an environmental impact assessment to provide a rational ocean physics assessment technique for power plant thermal effluent. This research also tried to create an improvement plan for heated effluent diffusion impact assessment by examining the reporting regulations for environmental impact assessment, national and international evaluation guidelines, etc. In the case of evaluating the oceanographic impact of heated effluent discharged from power plants, a pre-investigation is necessary before a full-scale presentence investigation, to accurately predict and minimize power plant construction effects on the surrounding environments. Before this presentence investigation, moreover, an integrated presentence plan, which agrees with the business plan, effect prediction, and post-investigation, needs to be established. A sufficient summit investigation must be made, which considers climate changes, and new and additional power plant construction. For accurate long-term oceanic environmental change prediction, the credibility of effect prediction must be elevated by presenting an evaluation method that is categorized by numerical organization models, verification methods, result presentation, and other things. Furthermore, unproductive conflicts between the people involved in heated effluent evaluation should be reduced by these improvement plans.

Modeling and Evaluation on the Dispersion of Air Pollutants in the Large Scale Thermal Power Plant (대단위발전소의 대기오염물질 확산에 관한 모델링 및 평가에 관한 연구)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.

  • PDF

Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect (지표 방사율에 의한 지표온도와 도시열섬효과 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • Because of urban development and changed land cover types, It is very important to acquire pixel unit of land surface temperature(LST) information when the heat island effect(HIE) of regional area are investigated. The brightness temperature observed by satellite is very useful for assessing the pixel unit of LST distributions for the analysis of thermal environment problems of urban areas. Also, satellite land cover data are very useful to our understanding of surface conditions of study areas. In this study, brightness temperature information of Landsat TM thermal channel was analyzed and compared with land cover information of Jeon-ju city. The atmospheric correction of TM thermal channel carried out to explain for compared LST long term monitoring errors. However, simple estimation and evaluation methods to find a physical relationship between LST from satellite images and in-situ data are compared with reference channel emissivity.

A Study on the Mechanical Properties Change by Stress Aging of 2.25Cr-1Mo Steel (2.25Cr-1Mo 강의 응력 시효에 의한 기계적 특성 변화에 대한 연구)

  • Yang, Hyun-Tae;Kim, Sang-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.517-522
    • /
    • 2001
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature and stress for 250 hours. Original, aged artificially material were tested to obtain the hardness and impact absorbed energy. Hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

  • PDF