• Title/Summary/Keyword: thermal impact

Search Result 794, Processing Time 0.027 seconds

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE (TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성)

  • Yu, Seong-Hun;Lee, Jong-hyuk;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

An Experimental Study on the Thermal Shock Behavior of PC/PET Alloy (PC/PET 합금의 열충격 특성에 관한 연구)

  • 유인자;이영순;이재학
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.64-71
    • /
    • 1995
  • Tests were performed to evaluate the effect of thermal shock behavior on the mechanical properties of PC(poly-carbonate) and PET(polyethylene-terephthalate) with MBS(methylmethacrylate-butadiene-styrene) alloy. Five different material weight fraction for PC/PET were employed : 0/100, 25/75, 50/50, 75/25, and 100/0. Three different weight fraction of MBS were added to each PC/PET : 0, 3, and 9. Therefore fifteen different types of PC/PET/MBS were prepared using single screw extrude. and injection molding machine. One thermal shock cycle consisted of each one hour stay at -$40^{\circ}C$ chamber and $+80^{\circ}C$ chamber without delay. Specimens were thermal shocked up to 20 and 40 cycles. Specific mechanical properities considered in this study include tensile, izod impact, and high rate Impact behaviors. In addition, the morphology of the fractured surface after Izod impact testing was investigated by the SEM (scanning electron microscope).

  • PDF

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

Environmental Impact Evaluation for the Power Generation System Using the LCA Methodology (LCA 기법을 이용한 발전시스템의 환경성 평가)

  • Ko, Kwang-Hoon;Hwang, Yong-Woo;Park, Kwang-Ho;Jo, Hyun-Jung;Jae, Moo-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.704-711
    • /
    • 2005
  • In this study, life cycle assessment(LCA) for the nuclear power generation system and the thermal power generation system, which make a great distribution of the electric power supply in Korea, has been carried out to compare the environmental impact between two power generation systems. In system boundary of this study, the stage of construction, operation and demolition & disposal were included. For life cycle impact assessment(LCIA), three cases were considered; the single environmental impact for the $CO_2$ emissions, the 8 major global environmental impact, and the major global environmental impact categories including radioactive impact. As the results, it was found that the nuclear power generation system is environmentally superior to the thermal power generation system as 10,000 times in the evaluation for the $CO_2$ emissions, 90 times in the evaluation for the 8 major environmental impact categories, and 40 times in the evaluation for the environmental impact categories including radioactive impact.

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites (탄소섬유 강화 PA6/PPO 복합재료의 섬유 배향에 따른 충격강도 및 열팽창 거동에 관한 연구)

  • Won, Hee-Jeong;Seong, Dong-Gi;Lee, Jin-Woo;Um, Moon-Kwang
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Short fiber reinforced composites manufactured by injection molding have diverse fiber orientations variable with measuring positions even in the same specimen, which is caused by the flow induced fiber orientation. Fiber orientations considerably affect the mechanical and thermal properties of final composite products. In this study, fiber orientation of injection molded carbon fiber reinforced PA6/PPO composite was measured at several points of the specimen by optical microscopy analysis and the corresponding izod impact strength, coefficients of thermal expansion (CTE) were also measured to investigate the influence of local fiber orientation on the mechanical and thermal properties. Izod impact strength where fiber was perpendicular to the direction of crack propagation was higher than where fiber was parallel to the direction, which could be explained be the impact resistance reinforcing mechanism by fiber orientation. CTE was also lower where fiber was parallel to the measurement direction of CTE than where fiber was perpendicular to the direction, which could be also explained by the dimensional stability mechanism by fiber orientation.

Mechanical and Thermal Properties of Liquefied Wood Polymer Composites (LWPC)

  • Hyun, Doh Geum;Kang, In Aeh;Lee, Sun Young;Kong, Young To
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.67-73
    • /
    • 2004
  • The influence of liquefied wood (LW) on the mechanical and thermal properties of liquefied wood-polymer composites (LWPC) was investigated in this study. The thermal behaviors of LWPC were characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. LW showed significant effects on the mechanical strength properties. The increase of flexural MOE and Young's modulus was related to the increase of stiffness of LWPC. The effect of LW was also significant on the flexural and tensile MOR. The impact strength decreased with the increase of LW application level. With the increased stress concentration by the poor bonding between LW and polymer, the impact strength of LWPC decreased, compared with that of high-density polyethylene (HDPE). The thermal stability of LWPC decreased with the increase of LW content up to 40%. The melting temperature of HDPE decreased with the increase of LW loading level. Enthalpy of HDPE also decreased with the addition of LW. This study proves the thermal stability necessary for the consolidation of composition materials.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.