• 제목/요약/키워드: thermal hydrodynamic model

검색결과 55건 처리시간 0.011초

3차원 ELCOM 모형을 이용한 대청호 수온성층 모의 (Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model)

  • 정세웅;이흥수;최정규;류인구
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.922-934
    • /
    • 2009
  • The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.

수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구 (An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct)

  • 박일석;박상민;하지수
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

수정된 내부 에너지 비평형 1차 외삽 경계조건을 적용한 열 유동 격자 볼츠만 모델에 관한 수치적 연구 (Numerical Simulation of Thermal Lattice Boltzmann Model with a Modified In-Ternal Energy Non-Equilibrium First-Order Extrapolation Boundary Condition)

  • 정해권;김래성;이현구;이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.620-627
    • /
    • 2007
  • In this paper, we adapt a modified internal energy non-equilibrium first-order extrapolation thermal boundary condition to the thermal lattice Boltzmann model (TLBM). This model is the double populations approach to simulate hydrodynamic and thermal fields. The bounce-back boundary condition which is a traditional boundary condition of lattice Boltzmann method has only a first order in numerical accuracy at the boundary and numerical instability. A non-equilibrium first-order extrapolation boundary condition has been verified to be of better numerical stability than the bounce-back boundary condition and this boundary condition is proved to be of second-order accuracy for the flat boundaries. The two-dimensional natural convection flow in a square cavity with Pr=0.71 and various Rayleigh numbers are simulated. The results are found to be in good agreement with those of previous studies.

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

곡선형격자 삼차원 수치모형을 이용한 바람에 의한 물의 순환 (Wind-Driven Circulation Using a Curvilinear Hydrodynamic Three-Dimensional Model)

  • Lee, Hye-Keun
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 1994
  • 곡선형격자 삼차원 수치모델이 소개되며 바람에 의한 물의 순환을 계산하기 위하여 얕은 호수에서 적용되었다. 수치모델의 결과가 실측자료와 비교되었으며, 바람이 점차 증가할 때 물의 성층에 의한 효과가 좋은 계산 결과를 얻기 위하여 결정적임을 알 수 있었다. 기상자료가 불충분할 때 소위 Inverse Method가 물 표면에서 열흐름을 추정하기 위하여 사용되었다.

  • PDF

나노유체의 열전도도 향상에 관한 새로운 메커니즘 (A New Mechanism for Enhanced Beat Transport of Nanofluid)

  • 이동근;김재원
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.560-567
    • /
    • 2006
  • Although various conjectures have been proposed to explain abnormal increase in thermal conductivity of nanofluids, the detailed mechanism could not be understood and explained yet. The main reason is primarily due to the lack of knowledge on the most fundamental factor governing the mechanisms such as Brownian motion, liquid layering, phonon transport, surface chemical effects and agglomeration. By applying surface complexation model for the measurement data of hydrodynamic size, zeta potential, and thermal conductivity, we have shown that sulfate charge state is mainly responsible for the increase in the present condition and may be the factor incorporating all the mechanisms as well. Moreover, we propose a new model including concepts of fractal and interfacial layer. The properties such as thickness and thermal conductivity of the layer are estimated from the surface charge states and the concept of electrical double layer. With this, we could demonstrate the pH dependences of the layer properties and eventually of the effective thermal conductivity of the nanofluid.

지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측 (Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir)

  • 차윤철;정세웅;윤성완
    • 환경영향평가
    • /
    • 제22권4호
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.