• 제목/요약/키워드: thermal history

검색결과 286건 처리시간 0.029초

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

빙축열 시스템 냉동기 성능 및 축열밀도 현장측정 기법연구 (In-Situ Measurement of Chiller Performance and Thermal Storage Density of an Ice Thermal Storage System)

  • 신영기;양훈철;태춘섭;조수;김영일
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1204-1209
    • /
    • 2005
  • In-situ measurement was made to evaluate chiller performance and thermal storage density of an ice thermal storage system. The system belonged to a big hotel and the measurement was conducted during late October. Owing to very small cooling load, the data logging was possible for a single thermal storage cycle. However, operation history of the chiller showed a relatively good spectrum of data for performance evaluation. COP and thermal storage density were calculated. The COP at full load was about 4.07, which was lower than $4.8\~6.4$ of new chillers. The measured storage density was about $10.9RT-h/m^3\;(=152MJ/m^3)$, which also was lower than a criterion of normal performance $(above\;13.0RT-h/m^3\;or\;181MJ/m^3)$. The study result provides technical basis for quantitative ESCO business scenario.

다결정상 Machinable Ceramics의 제조 (Fabrication of Multicrystalline Machinable Ceramics)

  • 김재국;양삼열;정창주
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.793-802
    • /
    • 1991
  • The multicrystalline machinable ceramics was fabricated by melting method using domestic pyrophyllite. After determination of optimum crystallization temperature and time from results of DTA, XRD and SEM, base glasses were heat treated by 2-step schedule. Main crystalline phases identified by XRD, EDX were Na-fluorophlogopite, ${\beta}$-spoduemen and ${\alpha}$-cordierite, and the crystallization condition of these crystals was varied with chemical composition, thermal history and nucleation agents. The thermal, chemical properties of prepared samples were excellent.

  • PDF

Deterministic Fracture Mechanics Analysis of Pressurized Thermal Shock

  • M. J. Jhung;Park, Y. W.
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.470-484
    • /
    • 1998
  • An analysis program for the evaluation of pressure vessel integrity under pressurized thermal shock (PTS) is developed. For given material properties and transient history such as temperature and pressure, the stress distribution is calculated and then stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. Using this program a round robin problem of PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study. The allowable maximum reference nil-ductility transition temperatures are determined for various crack sizes.

  • PDF

On-orbit Thermal Behavior of KOMPSAT Liquid-Monopropellant Hydrazine($N_2$H$_4$) Propulsion System

  • 김정수;최환석;한조영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.6-6
    • /
    • 2000
  • On-orbit thermal behavior of KOMPSAT (Korea Multi-purpose Satellite) propulsion system employing hydrazine (N$_2$H$_4$) liquid monopropellant is addressed. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was verified by flight telemetry data obtained during LEOP (Launch and Early Operation Phase). Results are depicted in terms of temperature history during several orbits selected and are compared with acceptable temperature ranges of system components. Cyclic behavior of temperature is reduced into duty cycles of the avionics heaters and subsequently converted into the electrical power required to keep away from propellant freezing. Temperature of each component which was achieved under on-ground thermal-balanced condition of spacecraft, is presented for comparison with the flight data, additionally.

  • PDF

SIMULATED THERMAL CYCLE로 열처리된 규소 단결정내의 산소 거동 (OXYGEN BEHAVIRO IN SILICON CRYSTAL ANNEALED THROUGH THE SIMULATED THERMAL CYCLE)

  • 서동석;권봉수;김영규;최병호;박재우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 1991
  • Oxygen behaviors in CZ-silicon wafer, grown by the Lucky Advanced Materials Inc. that is a pioneer of silicon material industries in Korea, were investigated to simulate effects on the device performance of oxygen, neglecting the effect of other impurity content, defects and thermal history. Silicon wafers were annealed through simulated 16K SRAM thermal cycle. As initial oxygen concentration increased up to 16.7ppma the amount of oxygen precipitation increased up to 10.6ppma and the bulk microdefect density increased up to $10.3{\times}10^3/mm^2$, but the depth of the denuded zone decreased to $5.0{\mu}m$

  • PDF

유한요소해석에 의한 선상가열 변형의 시뮬레이션 (Simulation of Line Heating Process by Finite Element Analysis)

  • 노인식;신종계;이광한
    • 대한조선학회논문집
    • /
    • 제32권2호
    • /
    • pp.75-83
    • /
    • 1995
  • 생산현장의 판굽힘가공 자동화를 위한 기초연구로서 강판의 선상가열 변형을 역학적 측면에서 고찰하고 3차원 비선형 과도 열탄소성 유한요소해석을 통한 수치 시뮬레이션을 시도하였다. 가스토치에 의해 가열되는 평판의 비정상 열전달 문제를 해석하며 온도분포의 시간이력을 계산하였고 이를 바탕으로 평판의 과도 열변형과정을 해석하였으며 그 결과를 상세히 고찰하였다.

  • PDF

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

HBA/HNA계 열방성 액정고분자의 유변학적 특성에 관한 연구 (Study on Rheological Properties of HBA/HNA Thermotropic Liquid Crystalline Polymer)

  • 손영곤
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.5216-5220
    • /
    • 2010
  • 열방성 액정 고분자의 유변 성질은 측정 전 고분자가 겪는 다양한 열 이력에 따라 다른 거동을 보이기 때문에 재현성 있는 실험 결과를 얻기가 매우 어렵다. 이 연구에서는 HBA/HNA계 액정 고분자가 열 이력의 영향을 이처럼 많이 받는 이유를 알고자 다양한 열 이력을 겪은 시료의 유변 물성을 관찰하였다. 그리고 비슷한 조건의 열이력을 겪은 시료의 DSC 측정을 통하여 그 원인을 파악하고자 하였다. 실험 결과 이 연구에서 사용된 액정고분자는 결정상-네마틱 전이온도 ($280^{\circ}C$)이상의 온도에서 액체와 같은 거동을 보이지만 이 온도 범위에서 결정화가 계속 진행되어 시간에 따라 점도가 증가하는 것으로 관찰되었다. 그러나 $320^{\circ}C$ 이상의 온도로 가열을 하면 생성되었던 모든 결정들이 용융되어 열 이력이 사라지는 것으로 관찰되었고 그 후에는 온도를 낮추더라도 결정의 성장 속도가 매우 느렸다. 이로서 액정고분자의 유변 물성 측정을 위해서는 $320^{\circ}C$ 이상의 온도로 가열을 하여 이전의 열 이력을 소멸 시킨 후 실험을 진행하여야 보다 재현성 있는 결과를 얻을 수 있음을 알 수 있었다.