• Title/Summary/Keyword: thermal heat losses

Search Result 91, Processing Time 0.024 seconds

Analysis for Thermal Effect by an Unheated Housing Unit in Apartment (공동주택에서 비난방세대가 미치는 열적 영향)

  • Lee, Eun-Ju;Koo, Junemo;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • Adjacent housing units suffer inevitable thermal losses if an unheated unit exists in an apartment building. Thermal loss of the units adjoining the unheated apartment can be neglected because the contact area is small and insulators are located in the walls. When insulators are not included in the slab between the upper and lower units, 70% of the heat supplied by an Ondol system may be used in the original unit, but 30% is transferred to the unit on the lower floor. Another 30% can be obtained from the ceiling if the upper floor housing unit is heated. This strong thermal connection is a characteristic of Ondol heating in apartment buildings. When there is an unheated unit, the lower floor unit uses 42.3% more heating energy if there is no insulation and 19.5% if a 35 mm insulator is used as in the current guidelines. Therefore, much thicker insulation should be applied to weaken the thermal connection.

An Experimental Study on the Thermal Characteristics of Hybrid Solar Receiver for Dish/Stirling System (Dish/Stirling 시스템 적용을 위한 Hybrid 태양열 흡수기의 열특성에 관한 실험 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon;Kim, Jin-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.7-13
    • /
    • 2007
  • A Dish type solar concentrating system consists of a parabolic concentrator and a cavity receiver. In order to achieve high temperatures from solar energy, it is essential to efficiently reflect the solar rays in the concentrator and to minimize thermal losses in the cavity receiver. Improving the economical efficiency of a solar power system required the stirling unit to be operated continuously. For continuous operation of the stilting unit, the receiver must be continuously provided with thermal energy from solar as well as additional combustion heat. It is possible for a hybrid solar receiver system equipped with an additional combustion to be operated 24 hrs/day. A hybrid solar receiver was designed and manufactured for a total thermal load of 35 kW in the operating temperature range $700^{\circ}C$ to $800^{\circ}C$. The hybrid receiver system was tested in gas-only mode by gas-fired heat to investigate thermal characteristics at inclination angle varying from 0 deg to 30 deg(cavity facing down) and the aperture to cavity diameter ratios of 0(closed cavity) and 1.0(open cavity). This paper has been conducted to measure temperature distribution in cavity surface and to analyze thermal resistances, and the evaporation and condensation heat transfer coefficient in all cases(open and closed cavity).

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

A Study on the Heat-Diffusion Prediction of Induction Heating JAR using Finite Element Method (유한요소법을 이용한 IH-JAR의 열확산 예측에 관한 연구)

  • 오홍석
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, pre-heating for forging operations, melting or cooking. In this paper, the magneto-thermal analysis of an induction heating jar(IH-JAR) was presented as an efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FLUX2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was presented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer (전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구)

  • Ahn, Hyun-Mo;Kim, Min-Soo;Song, Jae-Sung;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

Analysis on the Regenerator Characteristics for a Vuilleumier Heat Pump (Vuilleumier열펌프용 재생기 특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1572-1583
    • /
    • 1993
  • This paper deals with the analysis method of regenerator characteristics for designing a vuilleumier heat pump. First, models for evaluating the reheat and the flow losses are established by the comparative study between already proposed ones. Calculations based on the second-order method are performed for the well-known schulz heat pump. Results show that operating conditions as well as design parameters significantly affect the regenerator performances. The effects of operating conditions on the reheat and the flow losses appear to be similar in trends in both the hot-warm and the cold-warm regenerators. However, the losses in the one regenerator vary oppositely to those in the other with specific design parameters such as the phase angle and the swept volume ratio being changed. Also, it is confirmed that there is an optimum aspect ratio(D/L) which minimizes total loss for each regenerator.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

Scroll Expander with Heating Structure and Their Systems for Distributed Power Source (가열구조를 갖는 스크롤 팽창기와 이를 이용한 분산발전 시스템)

  • Kim, Young Min;Shin, Dong Kil;Lee, Jang Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.225-231
    • /
    • 2004
  • Scroll compressor has been used extensively for refrigeration since the early 1980's for its improved efficiency, greater reliability, smoother operation, lower noise and vibration. And also, nowadays, the scroll mechanism is used for expander even though in niche market yet. But scroll expander has not been used for high-temperature and high-pressure gas, because the continuous expansion of the gas causes a wide range of temperature distribution over the whole scroll wrap that leads to differential thermal expansion of scroll elements, which results in system vibrations, noise and efficiency losses. For the scroll expander to produce power more efficiently, all of radial and radial clearances between scroll wrap must be the same. In order to reduce differential thermal expansion in addition to improvements in thermal efficiency and specific power, we propose a scroll expander with heating structure. Heat-pipe heating structure is considered as the most effective method to heat the scroll expander at a uniform temperature. This paper includes some results of preliminary study of the scroll expander with heating structure and proposals of their systems for power generation and refrigeration.

  • PDF