• Title/Summary/Keyword: thermal gel

Search Result 606, Processing Time 0.027 seconds

Interaction between Whey and Soybean Proteins (유청 및 대두 단백질의 상호작용)

  • Shon, Dong-Hwa;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.361-370
    • /
    • 1988
  • To investigate the interaction between whey and soybean protein, thermal changes of component proteins were analyzed by column chromatography and gel electrophoresis. In the Sephadex G-200 chromatography of the mixture treated at above $80^{\circ}C$, the amount of low molecular weight proteins and high molecular aggregates were increased. This implicated that dissociation of 1ls globulin into subunits and the formation of soluble aggregates between these subunits and whey proteins that contain thiol and disulfide groups. These interaction between soy proteins and ${\beta}-lactoglobulin$, ${\alpha}-lactalbumin$, and proteose-peptone 3 were confirmed by gel electrophoresis. Bovine serum albumin, Immunoglobulin-G(H), Lactoferrin, 1ls-subunits(basic and acidic), and subunit of 7s globulin were also considered to interact each other depending on the condition of the salt solutions.

  • PDF

Aspergillus niger가 생성하는 생전분 분해효소의 정제와 특성

  • 정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.166-172
    • /
    • 1997
  • Aspergillus niger was selected as a strain producing the potent raw starch hydorlyzing enzyme. These experiments were conducted to investigate the conditions of the glucoa- mylase production, the purification of the enzyme, some characteristics of the purified enzyme and hydrolysis rate on various raw starches such as com, rice, potato, glutinous rice, sweet potato, wheat and barley. The optimum cultural temperature and time for the enzyme production on wheat bran medium were $30^{\circ}C$ and 96hrs, respectively. The respective addition of yeast extract and nutrient broth on wheat bran medium increased slightly the enzyme production. The enzyme was purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. The specific activity of the purified enzyme was 30.7u/mg-protein and the yield of enzyme activity was 25.8%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 56,000 by SDS-polyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pH3.7. The optimum temperature and pH were $65^{\circ}C$ and pH 4.0, respectively. The purified enzyme was stable in the pH range of pH 3.0-9.5 and below $45^{\circ}C$, and its thermal stability was slightly increased by the addition of $Ca^{2+}$. The purified enzyme was activated by $Co^{2+},\;Sr^{2+},\;Mn^{2+},\;Fe^{2+},\;Cu^{2+}$. Raw rice starch, raw corn starch, raw glutinous rice starch, raw sweet potato starch, raw wheat starch and raw barley starch showed more than 90% hydrolysis rate in 48hrs incubation. Even raw potato starch, most difficult to be hydrolyzed, showed 80% hydrolysis rate. The purified enzyme was identified as glucoamylase.

  • PDF

Purification and Characterization of Thermotolerable Alkaline Protease by Alkalophilic Bacillus sp. No. 8-16 (알칼리성 Bacillus sp. No.8-16의 내열ㆍ알칼리성 단백질 분해효소의 정제와 특성)

  • Bae, Moo;Park, Pil-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.545-551
    • /
    • 1989
  • Thermostable alkaline protease of alkalophilic Bacillus sp. No. 8-16 has been purified, and the properties of the enzyme investigated. The characteristic point of the organism used is especially good growth in alkaline and thermal condition. The alkaline protease of the strain No. 8-16 was purified from crude enzyme by acetone precipitation, CM-cellulose ion exchange chromatography, Sephadex G-100 and Sephadex G-75 gel filtration. Through the series of chromatograpies, the enzyme was purified to homogeneity with specific activity of 37 fold higher than that of the crude broth. Characteristics of the purified enzyme were as follow; $K_m$ value for the enzyme was 1.3 mg/ml, the alkaline protease showed a maximal activity at 7$0^{\circ}C$ and from the pH 6.0 through 12.0, and stable for 1 hr. at 6$0^{\circ}C$. The moleclar weight of the enzyme was estimated to be 33,000 by Sephadex G-100 gel filtration. The activity of the alkaline protease was inhibited by iodoacetic acid and Ag$^+$, Hg$^+$, PMSF (phenylmethylsulfonyl fluoride), and activated by $Ca^{2+}$ and Mn$^{2+}$.

  • PDF

Rheological Properties of Poly(lactic acid) Modified by Electron Beam Irradiation (전자선 조사로 개질된 PLA의 유변학적 물성)

  • Shin, Boo-Young;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.485-489
    • /
    • 2010
  • Poly(lactic acid)(PLA) has been modified by electron radiation in the presence of 5 phr glycidyl methacrylate (GMA) to enhance the melt strength of PLA. The modified PLA was prepared by varying the dose of irradiation and was characterized by observing the thermal properties, the melt viscoelastic properties and the gel fraction. The irradiated PLA with 300 kGy in the presence of 5 phr GMA showed drastically improved complex viscosity and storage modulus properties: a complex viscosity of about 210 times higher and a storage modulus of 14500 times higher than those of virgin PLA when measured at a frequency of 0.1 rad/s. Gel fraction study revealed that a branching reaction was more dominant than a crosslinking reaction when the PLA was irradiated with less than 200 kGy.

Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process (광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

A Synthesis of Mullite and Cordierite Ceramics by Solution-Polymerzation Route Based on PVA (PVA를 이용한 Solution-Polymerzation 합성법에 의한 Mullite, Cordierite 세라믹스의 합성)

  • 이용석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Because of the excellent thermal and chemical properties of mullite and cordierite as the stable oxide ceramic materials, they were widely used from engineering materials to electronic materials. Notwithstanding of their high demands, mullite was synthesised because it is not existed in nature. It is also difficult to produce cordierite of fine powder with high purity due to the narrow range of synthetic temperature. Mullite was synthesised by solid state reaction. However, synthesized mullite has been inhomogeneous. Because of the facts, various synthetic methods have been studied so far including sol-gel method. The purpose of this study is to synthesis mullite and cordierite of fine powder with high purity at the lower temperature by solution-polymerization route using PVA as a polymer carrier, which is an economical method by using low cost materials. As a result, mullite and cordierite were produced with mono crystal phase at 1200$^{\circ}C$ and 1250$^{\circ}C$, respectively, and their surface area over 20 ㎡/g.

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta

  • Jung, Kyung-Hun;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at $90^{\circ}C$ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and $200^{\circ}C$) of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment ($90^{\circ}C$ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique.

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF