• Title/Summary/Keyword: thermal gel

Search Result 600, Processing Time 0.026 seconds

The Effect of Age on the Myosin Thermal Stability and Gel Quality of Beijing Duck Breast

  • Wei, Xiangru;Pan, Teng;Liu, Huan;Boga, Laetithia Aude Ingrid;Hussian, Zubair;Suleman, Raheel;Zhang, Dequan;Wang, Zhenyu
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.588-600
    • /
    • 2020
  • The effect of age (22, 30, 38, and 46 days) on Beijing duck breast myosin gels was investigated. The results showed that the water holding capacity (WHC) and gel strength were markedly improved at the age of 30 days. Differential scanning calorimetry suggested that the myosin thermal ability increased at the age of 30 and 38 days (p<0.05). A compact myosin gel network with thin cross-linked strands and small regular cavities formed at the age of 30 days, which was resulted from the higher content of hydrophobic interactions and disulfide bonds. Moreover, the surface hydrophobicity of myosin extracted from a 30-day-old duck breast decreased significantly under temperature higher than 80℃ (p<0.05). This study illustrated that myosin extracted from a 30-day-old duck's breast enhanced and stabilized the WHC, thermal stability and molecular forces within the gel system. It concluded that age is an essential influencing factor on the myosin thermal stability and gel quality of Beijing duck due to the transformation of fibrils with different myosin character.

Shape Error and Its Compensation in the Fabrication of Microlens Array Using Photoresist Thermal Reflow Method (Photoresist thermal reflow 방법을 이용하여 제작한 마이크로렌즈 어레이의 형상 관련 오차 및 이에 대한 보정)

  • Kim, Sin Hyeong;Hong, Seok Kwan;Lee, Kang Hee;Cho, Young Hak
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.23-28
    • /
    • 2013
  • Microlens array as basic element of the optical system have been fabricated with various focal length (mainly with long focal length) depending on the purpose of application. In this paper, the microlens arrays were fabricated for observing fluorescent images within sol-gel. Though the fluorescent signal is very low, the microlens array can help obtaining clear images through extracting the fluorescent light from sol-gel. We fabricated microlens arrays with short focal length, which can extract the light using photoresist thermal reflow method. In the experiment, the diameter of microlens decreased after thermal reflow because the solvent within the photoresist was vaporized. Therefore, to compensate the shape error by this reduction, microlens diameter in photomask was altered and spin-coat recipe of photoresist were modified.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Effectiveness of Cooling Vest in Hot Environment (더운환경에서의 냉각조끼의 착용효과에 관한 연구)

  • 최정화;황경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2001
  • Cooling garments are being considered for reducing heat strain in hot environment. We evaluated the effectiveness of ice gel-based cooling vest in hot environment both resting and exercising. Four male subjects were exposed to heat(4$0^{\circ}C$, 50%RH) with vest or without it. The results were as follows; In case of the trial wearing ice gel-based cooling vest, total body weight loss, and local sweat volume were less than those without it. Mean skin temperature, rectal temperature, pulse, energy expenditure, temperature of inside clothes, and humidity of inside also were lower than those without cooling vest. By subjective thermal sensation, subjective humidity sensation, and thermal comfort sensation, it was proved that non-wearing vest decreased comfort than wearing that. These results suggested that wearing ice gel-based cooling vest reduced human heat strain in hot environment both resting and exercising.

  • PDF

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • Hwang, Jin Myeong;Yeo, Chang Seon;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

Large Band Gap Attenuation of CdS Nanoclusters after H2S Exposure

  • Han, Seung-Woo;Park, Eun-Hye;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.29-32
    • /
    • 2019
  • Large band gap attenuation of CdS nanoclusters in hybrid sol gel matrix comprised of 3-(trimethoxysilyl)propyl methacrylate (TMSPM), 15 wt. % zirconium, and various amounts of cadmium acetate was observed after $H_2S$ exposure. Hybrid sol gel matrixes were prepared by hydrolysis and condensation reactions. The sol gels contained with various amount of cadmium acetate were spin coated to glass substrates and exposed to $H_2S$ gas. The UV-visible absorption peaks were shifted toward blue with increasing the amount of CdS nanoclusters and were shifted to the red after thermal process. Significant amount of -OH absorption peaks were reduced after thermal process. Strong room temperature photoluminescence (PL) of CdS nanoclusters was observed after exposing to $H_2S$ gas. The PL intensity increased for several minutes and slowly decreased thereafter. The luminescence peaks were continuously shifted toward blue as the time passed. Extraordinary Stokes shift (approximately 160 nm) was observed.

Preparation of Ferroelectric PZT Thin Film by Sol-Gel Processing; (III) Effect of Rapid Thermal Annealing on Microstructures and Dielectric Properties (솔-젤법에 의한 강유전성 PZT 박막의 제조;(III) 급속열처리방법이 미세구조 및 유전특성에 미치는 영향)

  • 김병호;박성호;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.881-892
    • /
    • 1995
  • Sol-Gel derived ferroelectric PZT thin films were fabricated on ITO/Glass substrate. Two kinds of rapid thermal annealing methods, R-I (six times of intermediate and final annealing) and R-II (one final annealing after six times of intermediate annealing) were used for preparation of multi-coated PZT thin films. 2500$\AA$-thick PZT thin films were obtained by the R-I and R-II methods and characterized by microstructure and dielectric properties. In case of using R-II, the microstructure was finer than that of R-I and there was no distinguishable difference in dielectric properties of PZT thin films between the R-I and R-II methods. But dielectric properties were enhanced by increasing perovskite phase fraction with increasing annealing temperature. Measured dielectric constant of PZT thin film annealed at 62$0^{\circ}C$ using the R-I method was 256 at 1kHz. Its remanant polarization (Pr) and coercive field (Ec) were 14.4$\mu$C/$\textrm{cm}^2$ and 64kV/cm, respectively.

  • PDF

Mechanical Properties of Radiation-Curing Vinyl Ester Resin (방사선 경화 비닐에스터 수지의 기계적 특성 연구)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun Bin;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Vinyl ester (VE) resins, introduced in the late 1960s, have made large strides in reinforced plastics applications as adhesive and matrix materials on their appropriate mechanical performance characteristics in the glassy state. Generally, VE resins are a group of dimethacrylate resins based on bisphenol A type epoxy resin. They exhibit easy handling properties as well as good resistance to most chemical agents due to their mechanical and thermal properties. In this study, the effects of curing methods of vinyl ester resins on gel contents, flexural strength and dynamic mechanical properties were investigated. Thermal curing (room temperature, $80^{\circ}C$) and electron beam curing were used to crosslink a VE resin/styrene complex (65/35 wt%) with methyl ethyl ketone peroxide (MEKPO) as a catalyst and an 8 wt% cobalt naphthenate in styrene solution as a accelerator. For the samples, gel contents as well as flexural strength and dynamic mechanical properties were characterized and compared by soxhlet apparatus, universal testing machine (UTM) and dynamic mechanical analysis (DMA). As a result, the electron-cured VE resin was confirmed as a better condition than those for gel contents, flexural strength and dynamic mechanical properties, respectively.

Enhancement in the Thermal Stability of Microporous UHMWPE Membrane by LED-UV Crosslinking (LED-UV 가교에 의한 UHMWPE 미세다공막의 열 안정성 향상)

  • Jeong-Hwan Kim;Jinho Jang
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.231-238
    • /
    • 2023
  • Microporous gel films of 29 m were prepared by the gel drawing of UHMWPE/soybean oil blend (4:6, w/w) up to 800%. The stretched films containing the optimal photoinitiator concentration, depending on the film thickness, was cross-linked under 365 nm LED-UV irradiation and the oil was extracted with n-hexane, resulting in a gel fraction of 95 % or more. With the formation of the cross-linked structure, the melt-down temperature and melt-down elongation increased by 16 ℃ and by 63% respectively. Also the thermal stability of the crosslinked UHMWPE was proved by the area shrinkage under the heat treatment decreased to 3.8 % compared to 17.4 % for the pristine film, and by the reductions in the combustion heat. The enhanced thermal stability of the crosslinked UHMWPE microporous membranes can be used for various industrial applications such as filters, electric vehicles and energy storage systems.

Gelatinization and retrogradation characteristics of Korean rice cake in the presence of citric acid

  • Timilehin Martins Oyinloye;Won Byong Yoon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.90-97
    • /
    • 2023
  • The effect of citric acid on rice starch gelatinization and low-temperature (4 ℃) storage was studied in order to produce rice cake with a lower retrogradation rate. A citric acid solution in the ratio of 0, 0.5, 1.0, and 1.5% (w/w) of the water used during production was utilized. The gelatinization properties, gel strength, thermal properties, and texture analysis were evaluated to determine the retrogradation rate. The result showed that acid hydrolysis occurred in samples treated with citric acid. Thus, increasing citric acid decreased gelatinization temperature (58.63±1.98 to 45.84±1.24 ℃). The moduli of elasticity increased with increasing citric acid concentration, indicating an increased gel strength. Thermal analysis of starch showed that the onset, peak, and conclusion temperatures of retrogradation were increased significantly with the storage period and decreased with citric acid concentration. After 72 h of low-temperature storage (4 ℃), the retrogradation rate was lowest in the rice cake with 1.5% citric acid solution, with an increased ratio of 12.01 to 13.60% compared to the control sample, with a ratio of 12.99 to 43.54%. This shows a high retrogradation rate in the control sample. Additionally, sensory properties and retrogradation ratio suggest that the addition of 1.0% citric acid solution during rice cake production is efficient in retarding the retrogradation without an adverse effect on the rice cake modeling and acceptance.