• Title/Summary/Keyword: thermal fluid analysis

Search Result 812, Processing Time 0.026 seconds

Prediction of the Turbulent Mixing in Bare Rod Bundles

  • Kim, Sin;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • The turbulent mixing rate is a very important variable in the thermal-hydraulic design of nuclear reactors. In this study, the turbulent mixing rate the fluid flows through rod bundles is estimated with the scale analysis on the flow pulsation phenomenon. Based upon the assumption that the turbulent mixing is composed of molecular motion, isotropic turbulent motion (turbulent motion without the flow pulsation), and How pulsation, the scale relation for the mixing is derived as a function of P/D, Re, and Pr. The derived scale relation is compared with published experimental results and shows good agreements. Since the scale relation is applicable to various Prandtl number fluid flows, it is expected to be useful for the thermal-hydraulic analysis of liquid metal coolant reactors as well as of moderate Prandtl number coolant reactors.

  • PDF

Analysis of Transient Thermal Characteristics in a Gas-Loaded Heat Pipe (가스내장 히트파이프의 과도 열특성 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.514-523
    • /
    • 2001
  • The thermal performance characteristics of gas-loaded heat pipe(GLHP) were investigated by using transient diffuse-front model. Numerical evaluation of the GLHP is made with water as a working fluid and Nitrogen as control gas in the stainless steel tube. The transient vapor temperature and wall temperature were obtained. It is found that the temperature profiles and gas mole fraction distribution have been mainly influence by the diffusion between working fluid and noncondensable control gas in the condenser of GLHP. It is also found that he large power input make the diffusion region smaller.

  • PDF

Design and Analysis of Heat Exchanger Using Sea Water Heat Source for Cooling

  • Kim, MyungRae;Lee, JuHee;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.25-34
    • /
    • 2016
  • Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident of NPP (원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석에 관한 연구)

  • Hwang, K.M.;Jin, T.E.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with a design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena may arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated collant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

A Study on the model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Ji, Young-Moo;Park, Jung-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.358-361
    • /
    • 2008
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For numerical analysis, the Boussinesq fluid approximation and line fire model, which is assumed by the shape of forest fire spreading, are adopted. Comparing 3-D full numerical solutions with 2-D similarity solution, it has been built a new model that is capable of temperature prediction along the symmetric vertical axis in both cases of laminar and turbulent flows.

  • PDF

Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid (초임계 이산화탄소를 작동유체로 하는 인쇄기판형 열교환기의 형상변수에 따른 전열성능 수치모사)

  • Jeon, Sang Woo;Ngo, Ich-long;Byon, Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.737-744
    • /
    • 2016
  • The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical $CO_2$ power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical $CO_2$ as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

Numerical study on overall thermal performance in SAH duct with compound roughness of V-shaped ribs and dimples (V 형 rib과 dimple로 구성된 SAH 덕트에서의 총괄 열성능에 대한 수치적 연구)

  • Kumar, Anil;Kim, Man-Hoe
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.43-55
    • /
    • 2015
  • This paper presents the thermal hydraulic performance of a three dimensional rib-roughened solar air heater (SAH) duct with the one principal wall subjected to uniform heat flux. The SAH duct has aspect ratio of 12.0 and the Reynolds number ranges from 2000 to 12000. The roughness has relative rib height of 0.045, ratio of dimple depth to print diameter of 0.5 and rib pitch ratio of 8.0. The flow attack angle is varied from $35^{\circ}$ to $70^{\circ}$. Various turbulent flow models are used for the heat transfer and fluid flow analysis and their results are compared with the experimental results for smooth surfaces. The computational fluid dynamics (CFD) results based on the renormalization k-epsilon model are in better outcomes compared with the experimental data. This model is used to calculate heat transfer and fluid flow in SAH duct with the compound roughness of V-shaped ribs and dimples. The overall thermal performance based on equal pumping power is found to be the highest (2.18) for flow attack angle of $55^{\circ}$. The thermo-hydraulic performance for V-pattern shaped ribs combined with dimple ribs is higher than that for dimple rib shape and V-pattern rib shape air duct.

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • Son, Yeong-Seok;Sin, Ji-Yeong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF