• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.031 seconds

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

A Study on the Establishment of the Optimal Temperature Limits for Man's Thermal Comfort in an Asymmetric Radiant Space (불균등 복사공간의 쾌적온도범위 설정에 관한 연구)

  • Sohn, Jang-Yeul;Kong, Sung-Hoon;Yun, Yong-Jin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.3
    • /
    • pp.187-199
    • /
    • 1985
  • The low-temperatured radiant heating System like a panel heating system is recognized as nice means to make comfortable indoor environment. Perhaps, 'Ondol' would be a typical example of the Panel heating system. Nevertheless. Occupants in a radiantly heated Space which has an asymmetric radiant field may feel thermally discomfort due to the asymmetric radiation. The aim of this Study is to suggest the fundamental technical data for establishing Standards of thermally comfortable environment when designing a radiant heating System. Thermal distribution of indoor environment and the skin temperature of the occupants were measured at experimental room in KIER (Korea Institute of Energy and Resources). Whole/Regional thermal and comfort Sensation votes of the occupants were taken simultaneously in order to investigate the relationships between thermal environmental factor and the occupants' responses. The effect of an asymmetric radiation on thermal environment and the occupants' responses was analyzed by using a v.r.t.(vector radiant temperature). By this means, the thermally neutral limits for the ambient air temperature and the floor surface temperature by the occupants' responses were Obtained. And the recommended temperature limits of the indoor surface were derived from the experimental work and the theory of radiant and will provide thermal neutrality for man without any discomfort on the part of the body.

  • PDF

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Thermal Conductivities of Grain (곡물(糓物)의 열전도계수(熱傳導係數)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Koh, Hak Kyun
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • The thermal conductivies of grain are influenced by many physical factors such as' initial temperature, moisture content, composition, bulk density or porosity of grain. However, not only few researchers considered all these factors in determining thermal conductivities of grain but also many researchers considered only moisture content as a major effective factor on the thermal conductivity. This study was conducted to experimentally determine the thermal conductivities of rough rice (3 Japonica-type, 3 Indica-type) and barley(covered, naked) as a function of initial temperature, moisture content and porosity of grain, and to investigate the effect of those physical factors on the thermal conductivities of grain. The results of this study are summarized as follows; 1. The average time correction value for this experimental apparatus was 7 sec, which. was insignificant to the calculated thermal conductivity. The resulting conductivity for considering time correction value was only 4.9 percent higher than that calculated by the non-corrected equation. 2. The thermal conductivity was in the range of 0.1208~0.2058W/$m^{\circ}K$ for naked barley, 0.1138~0.1724W/$m^{\circ}K$ for covered barley, 0.0912~0.1864W/$m^{\circ}K$ for Japonica-type rice and 0.086~0.1774W/$m^{\circ}K$ for Indica-type rice. 3. The thermal conductivities of grain increased with initial temperature and moisture content of grain but decreased with porosity of grain. 4. The regression equations of the thermal conductivity of each grain were determined as a function of initial temperature, moisture content and porosity. The regression equations of the thermal conductivity of both Japonica-type and Indica-type rough rice were also determined.

  • PDF

Methods to Characterize the Thermal Stratification in Thermal Energy Storages (열에너지 저장소 내 열성층화를 평가하기 위한 기법)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

ADAPTIVE FUZZY CONTROLLER IMPLEMENTED ON THERMAL PROCESS

  • Abd el-geliel, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.84-89
    • /
    • 2003
  • Fuzzy controller is one of the succeed controller used in the process control in case of model uncertainties. But it my be difficult to fuzzy controller to articulate the accumulated knowledge to encompass all circumstance. Hence, it is essential to provide a tuning capability. There are many parameters in fuzzy controller can be adapted, scale factor tuning of normalized fuzzy controller is one of the adaptation parameter. Two adaptation methods are implemented in this work on an experimental thermal process, which simulate heating process in liquefied petroleum gases (LPG) recovery process in one of petrochemical industries: Gradient decent (GD) adaptation method; supervisory fuzzy controller. A comparison between the two methods is discussed.

  • PDF

Efficient Thermal Annealing for FBAR Devices

  • Song Hae-il;Mai Linh;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.167-171
    • /
    • 2005
  • In this paper, the resonance characteristics of SMR-type FBAR devices annealed by three different annealing methods are investigated and compared. The resonance characteristics could be effectively improved by the proposed efficient annealing method which optimizes the annealing conditions. It seems very useful for improving the performance of the SMR-type FBAR devices as a cost-effective way.

The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

The Dependence of Temperature and Frequency for the Dissipation Factor in Liquid Dielectrics (액체절연체(실리콘유) 유전정접의 온도및 주파수의존성)

  • 이돈희;소병문;이수원;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.85-89
    • /
    • 1993
  • Silicone oil exhibits the properies of both organic and inorganic substances and, thus, it has many superior properties such as higher thermal resistance and lower thermal oxidation level when compared to other dielectric liquids. In order to investigate the dielectric characteristics, dielectric liquids of viscosity 1 [cSt] is chosen as the specimen and experiment is performed in the temperature range of 20∼65 [$^{\circ}C$] and frequency range of 30∼1${\times}$10$\^$6/ [Hz] respectively. As a result, the observed linear decrease in dissipation factor at the frequency range below 3 [kHz] is due to the influence of frequency, whereas the increase in dissipation factor at higher frequency range is contributed by electrode's resistance. At a fixed frequency of 30 [kHz], increasing temperature results in higher peak value and wide width of the absorption curve. This is due to the increase in dipole and viscosity. As temperature increases, dipole moment is decreased from 0.98 to 0.64 [debye]. The activation energy which causes the relaxation and loss of dielectric is obtained about 15 [kcal/mole].

  • PDF

Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids (물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능)

  • Park, Y.J.;Kim, K.H.;Lee, S.H.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.