• Title/Summary/Keyword: thermal energy equation

Search Result 307, Processing Time 0.03 seconds

A Study of Thermal Effects for a Half-Circumferential Grooved Journal Bearing (半圓周形 윤활홈을 갖는 저어널 베어링의 熱效果에 관한 연구)

  • Chun, Sang-Myung;Lalas, Demetrius P.
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.36-51
    • /
    • 1990
  • A parametric study of the thermal effects of a half-circumferential grooved journal bearings under aligned and misaligned conditions has been carried out by solving numerically the coupled Reynolds and energy equation system. Five different sets of boundary conditions for the energy equation have been used which include mixing between recirculating oil and inlet oil and a contraction ratio for the cavitation region. The effects of changes of the inlet oil temperature and pressure, the wall temperature and the L/D ratio have also been examined. For the range of parameters found in internal combustion engines, the mixing effectiveness at the groove and the resulting final mixture temperature have been found to be as important as the wall temperature and the heat transfer rate. The variability of the temperature, though, has been shown to smooth out the peaks of both pressure and friction during misaligned condition Distributions of friction and pressure in the oil are also examined which may be useful in attempts to reduce friction without reducing load. Results for an axial grooved bearing are also presentsed for comparision purpose.

AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS (과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘)

  • Park, I.K.;Yoon, H.Y.;Cho, H.K.;Kim, J.T.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel (CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가)

  • Kim, C.;Park, H.B.;Jin, T.E.;Jeong, I.S.;Seok, C.S.;Park, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

A Study on Transient Thermal Behavior During the Charging Process in a Stratified Water Storage Tank and Its Storage Efficiency (성층 온수 저장 중 과도 열거동과 축열효율에 관한 연구)

  • Pak, E.T.;Chu, Y.J.;Kim, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 1997
  • In this study, the theoretical equation of thermal storage efficiency was established to applied long term hot water storage system. The, effective thermal diffusivity and storage efficiency were, measured through the experiment to predict the degree of mixture in thermal storage tank. The effective thermal diffusivity was inversely preportional to the storage efficiency. The most effective storage efficiency was obtained under condition of low flow rate and using the perforated distributor.

  • PDF

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol) (Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구)

  • Hyun, Ha-Neul;Choi, Ji-Woo;Cho, Seung-Hyun
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • This study uses Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol) (DGETAM), an amine hardener 4,4'-diaminodiphenylethane (DDE) and cationic catalyst N-benzylpyrazinium hexafluoroantimonate (BPH) to make epoxy film. For analysis, 1H_NMR and FT-IR were used to verify proper synthesis, and the liquid crystallinity of DGETAM was checked using Differntial Scanning Calorimetry and Polarized Optical Microscopy. Thermal conductivity of the sample was measured using Laser Flash Apparatus. Thermal stability as well as thermal conductivity is important when used as a packaging material. Activated energy is the energy needed to generate a response, which can be used to estimate the energy required to maintain physical properties. It was obtained using the Arrhenius equation based on the data measured by isothermal decomposition using Thermogravimetric Analysis. Measurement of the thermal conductivity of epoxy films showed higher thermal conductivity when DDE was used, and it was found that thermal conductivity had an effect on thermal stability, given that it represented an activation energy similar to a film with BPH upon 5% decomposition.

Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable (원전 케이블용 절연재료의 열분석과 등가수명)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Park, Kyeung-Heum;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.

Thermal Management of a Nickel/Metal Hydride Battery (Nickel/Metal Hydride 전지의 열관리기술 개발)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.667-672
    • /
    • 1997
  • Thermal behavior of high capacity Nickel/Metal hybride battery in analyzed using the NISA software which is based on the three dimensional finite element method. Differential energy balance equation is used for the conduction heat transfer of the battery, while convective heat transfer equation is used for the interface between the battery and air. Heat generation rate and convective heat transfer coefficient are tested as variables to investigate thermal behavior, and the generalized equation for maximum temperature inside the battery is developed. The abrupt rise of the battery temperature due to the quick charge or discharge can be prevented from the use of metallic cooling fin. In addition, temperature augmentation of the battery is negligible when the low thermal conductive and thin insulating material is used outside of the battery case.

  • PDF

Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor (액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

A Study on the Performance Evaluation of Double-Layered Catayst MEA (이중촉매 MEA의 성능평가에 관한 연구)

  • Kim Hong-Gun;Kang Sung-Soo;Kwac Lee-Ku;Kang Young-Woo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.50-59
    • /
    • 2006
  • An experimental and numerical study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. Based on the principals of the problem, the equation of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used for the numerical calculation. A unit cell for $200cm^2$ MEA is assembled and measured for finding better operational situation. After finding the optimal condition, 10 cell stacked PEMFC is fabricated. For the performance evaluation, V-I and power curves are examined in detail by changing the condition of humidity, temperature, pressure, thickness of catalyst and oxidant. It is found that the power is maximized around 500W at 80A.

  • PDF