• Title/Summary/Keyword: thermal decomposition method

Search Result 328, Processing Time 0.031 seconds

Low- Temperature Decomposition of Epoxy Resin

  • Katsuhiko Saido;Hiroyuki Taguchi;Yoichi Kodera;Takeshi Kuroki;Park, Jeong-Hun;Chung, Seon-Yong
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.490-492
    • /
    • 2004
  • We report a new method using a heating medium for the thermal decomposition of epoxy resin (EP) at temperatures ranging from 50 to 200$^{\circ}C$. EP decomposition also occurred below 50$^{\circ}C$ during a 6-day period to generate bisphenol A (BPA) at concentrations as high as 5 ppm. When polyethylene glycol was used as a heating medium, we determined the kinetics of the EP decomposition at low temperature. We determined the apparent activation energy of the overall decomposition to be 40.8 kJ/mol and the frequency factor to be 2.3${\times}$10$^3$ by monitoring the rate of BPA formation. Thus, EP is clearly unstable upon the application of heat.

Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics (결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Jeong-Hwan;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.214-220
    • /
    • 2017
  • The spherical Al/RDX/AP composites with an average size of $550{\mu}m$ were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about $50^{\circ}C$ and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

Thermal Characterization for HTPE IM Propellants (HTPE 둔감 추진제의 열특성)

  • Yoo, Ji-Chang;Kim, Jun-Hyung;Kim, Chang-Kee;Seo, Tae-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.177-180
    • /
    • 2009
  • This study was investigated to know the thermal decomposition for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid-solid phase change($II{\rightarrow}I$) of AN was followed by the exothermic process due to decomposition of BuNENA/AN until $200^{\circ}C$. The critical temperature, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from the non-isothermal curves at various heating rates, by using Semenov's thermal explosion theory. Kissinger's method was employed to obtain the activation energy of the thermal decomposition, and it was used to calculate the $T_c$.

  • PDF

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

Kinetic Analysis for the Catalytic Pyrolysis of Polyethylene Terephthalate Over Cost Effective Natural Catalysts

  • Pyo, Sumin;Hakimian, Hanie;Kim, Young-Min;Yoo, Kyung-Seun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.706-710
    • /
    • 2021
  • In the current research, thermal and catalytic thermogravimetric (TG) analysis of polyethylene terephthalate (PET) over natural zeolite (NZ), olivine, bentonite, HZSM-5, and HAl-MCM-41 were investigated using a TG analyzer and model-free kinetic analysis. Catalytic TG analysis of PET was carried out at multi-heating rates, 10, 20, 30, and 40 ℃/min, under nitrogen atmosphere. Apparent activation energy (Ea) values for the thermal and catalytic pyrolysis of PET were calculated using Flynn-Wall-Ozawa method. Although natural catalysts, NZ, olivine, and bentonite, could not lead the higher PET decomposition efficiency than synthetic zeolites, HZSM-5 and HAl-MCM-41, maximum decomposition temperatures on the differential TG (DTG) curves for the catalytic pyrolysis of PET, 436 ℃ over olivine, 435 ℃ over bentonite, and 434 ℃ over NZ, at 10 ℃/min, were definitely lower than non-catalytic pyrolysis. Calculated Ea values for the catalytic pyrolysis of PET over natural catalysts, 177 kJ/mol over olivine, 168 kJ/mol over bentonite, and 171 kJ/mol over NZ, were also not lower than those over synthetic zeolites, however, those were also much lower than the thermal decomposition, suggesting their feasibility as the proper and cost-effective catalysts on the pyrolysis of PET.

The Kinetics of Radical Copolymerization and Thremal Decoposition of Poly(Styrene-co-2- Hydroxypropylacrylate) (Poly(Styrene-co-2-Hydroxypropylacrylate)의 라디칼 공중합 및 열분해 속도론)

  • Kim, Nam-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.205-212
    • /
    • 2009
  • Solution copolymerization of Styrene(St.) with 2-Hydroxypropylacrylate(2-HPA) was carried out with Benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a batch reactor. Reaction volume and reaction time were 0.3 liters, 8 hours respectively. The time to reach steady state was about the six time. The monomer reactivity ratios, $r_1$(St.) and $r_2$(2-HPA) were determined by both the Kelen-Tudos method and the Fineman-Ross method ; $r_1$(St.)=0.376(0.330), $r_2$(2-HPA)=0.408(0.778). The activation energy of thermal decomposition was in the range of $33{\sim}55kcal/mol$.

Preparative and Thermal Studies of Tris (8-hydroxyquinolino)molybdenum (III) (Tris(8-hydroxyquinolino) molybdenum (III)의 합성과 열적 성질에 관하여)

  • Choi, Q. Won;Oh, Joon-Suk;Lee, Kwang-Woo;Lee, Won
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.146-149
    • /
    • 1968
  • A new chelate compound, tris(8-bydroxyquinolino)molybdenum(III), [$Mo(C_9H_6ON)_3$], has been prepared by the method of electrolytic reduction of the acidic molybdate solution. Thermal decomposition products of the chelate has been studied by DTA and TGA method. It is concluded that the decomposition product is a yellowish green colored bis(8-hydroxyquinolino)dioxo molybdenum(VI), [$MoO_2(C_9H_6ON)_2$].

  • PDF